XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment

Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2021-04, Vol.7 (17)
Hauptverfasser: Lee, Youjin, Bogdanoff, Derek, Wang, Yutong, Hartoularos, George C, Woo, Jonathan M, Mowery, Cody T, Nisonoff, Hunter M, Lee, David S, Sun, Yang, Lee, James, Mehdizadeh, Sadaf, Cantlon, Joshua, Shifrut, Eric, Ngyuen, David N, Roth, Theodore L, Song, Yun S, Marson, Alexander, Chow, Eric D, Ye, Chun Jimmie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 17
container_start_page
container_title Science advances
container_volume 7
creator Lee, Youjin
Bogdanoff, Derek
Wang, Yutong
Hartoularos, George C
Woo, Jonathan M
Mowery, Cody T
Nisonoff, Hunter M
Lee, David S
Sun, Yang
Lee, James
Mehdizadeh, Sadaf
Cantlon, Joshua
Shifrut, Eric
Ngyuen, David N
Roth, Theodore L
Song, Yun S
Marson, Alexander
Chow, Eric D
Ye, Chun Jimmie
description Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.
doi_str_mv 10.1126/sciadv.abg4755
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2516841629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-560bb8e3e78dc8110ebaf56c777fe0676d327afe0e092591088e82f0d704b9d33</originalsourceid><addsrcrecordid>eNpVkU1rGzEQhkVpiIPra45Bx17WkVarj-2hEEKbBEwKSQptL0K7O2sr7EqOtF7ifx8Fu8Y5zTB65p0ZvQidUzKnNBeXsbamGeemWhaS80_oLGeSZzkv1OejfIJmMT4TQmghBKflKZowphSjBT9D8c_ff_DyDT-uzWBN121xgOi7ERocrVt2kNXQdfjh_gpHeNmAq1M1MSOYLmJ4XSc8Wu_wCgYIfgkO7LDF1uFhBXjY9D7g3tbBgxtt8K4HN3xBJ23qhtk-TtHvnz-erm-zxa-bu-urRVYXXAwZF6SqFDCQqqkVpQQq03JRSylbIEKKhuXSpBRImfOSEqVA5S1pJCmqsmFsir7vdNebqoemTqOD6fQ62N6ErfbG6o8vzq700o9aEV6WjCeBr3uB4NPtcdC9je__YRz4TdQ5p0IVVORlQuc7NJ0aY4D2MIYS_W6W3pml92alhovj5Q74f2vYG-7Gle0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516841629</pqid></control><display><type>article</type><title>XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Lee, Youjin ; Bogdanoff, Derek ; Wang, Yutong ; Hartoularos, George C ; Woo, Jonathan M ; Mowery, Cody T ; Nisonoff, Hunter M ; Lee, David S ; Sun, Yang ; Lee, James ; Mehdizadeh, Sadaf ; Cantlon, Joshua ; Shifrut, Eric ; Ngyuen, David N ; Roth, Theodore L ; Song, Yun S ; Marson, Alexander ; Chow, Eric D ; Ye, Chun Jimmie</creator><creatorcontrib>Lee, Youjin ; Bogdanoff, Derek ; Wang, Yutong ; Hartoularos, George C ; Woo, Jonathan M ; Mowery, Cody T ; Nisonoff, Hunter M ; Lee, David S ; Sun, Yang ; Lee, James ; Mehdizadeh, Sadaf ; Cantlon, Joshua ; Shifrut, Eric ; Ngyuen, David N ; Roth, Theodore L ; Song, Yun S ; Marson, Alexander ; Chow, Eric D ; Ye, Chun Jimmie</creatorcontrib><description>Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.abg4755</identifier><identifier>PMID: 33883145</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Animals ; Cancer ; Gene Expression Profiling ; Mice ; Neoplasms - genetics ; SciAdv r-articles ; Sequence Analysis, RNA ; Single-Cell Analysis ; Systems Biology ; Transcriptome ; Tumor Microenvironment - genetics ; Whole Exome Sequencing</subject><ispartof>Science advances, 2021-04, Vol.7 (17)</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-560bb8e3e78dc8110ebaf56c777fe0676d327afe0e092591088e82f0d704b9d33</citedby><cites>FETCH-LOGICAL-c456t-560bb8e3e78dc8110ebaf56c777fe0676d327afe0e092591088e82f0d704b9d33</cites><orcidid>0000-0001-7796-7779 ; 0000-0002-2489-1122 ; 0000-0001-6827-0128 ; 0000-0003-1357-8111 ; 0000-0001-6808-2717 ; 0000-0002-3970-9573 ; 0000-0002-1762-1677 ; 0000-0002-0734-9868 ; 0000-0003-2939-013X ; 0000-0001-6539-4272 ; 0000-0001-6560-3783 ; 0000-0002-2734-5776 ; 0000-0003-1700-3737 ; 0000-0002-9344-8060 ; 0000-0001-6980-2368 ; 0000-0001-8079-918X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33883145$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Youjin</creatorcontrib><creatorcontrib>Bogdanoff, Derek</creatorcontrib><creatorcontrib>Wang, Yutong</creatorcontrib><creatorcontrib>Hartoularos, George C</creatorcontrib><creatorcontrib>Woo, Jonathan M</creatorcontrib><creatorcontrib>Mowery, Cody T</creatorcontrib><creatorcontrib>Nisonoff, Hunter M</creatorcontrib><creatorcontrib>Lee, David S</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Lee, James</creatorcontrib><creatorcontrib>Mehdizadeh, Sadaf</creatorcontrib><creatorcontrib>Cantlon, Joshua</creatorcontrib><creatorcontrib>Shifrut, Eric</creatorcontrib><creatorcontrib>Ngyuen, David N</creatorcontrib><creatorcontrib>Roth, Theodore L</creatorcontrib><creatorcontrib>Song, Yun S</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chow, Eric D</creatorcontrib><creatorcontrib>Ye, Chun Jimmie</creatorcontrib><title>XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.</description><subject>Animals</subject><subject>Cancer</subject><subject>Gene Expression Profiling</subject><subject>Mice</subject><subject>Neoplasms - genetics</subject><subject>SciAdv r-articles</subject><subject>Sequence Analysis, RNA</subject><subject>Single-Cell Analysis</subject><subject>Systems Biology</subject><subject>Transcriptome</subject><subject>Tumor Microenvironment - genetics</subject><subject>Whole Exome Sequencing</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1rGzEQhkVpiIPra45Bx17WkVarj-2hEEKbBEwKSQptL0K7O2sr7EqOtF7ifx8Fu8Y5zTB65p0ZvQidUzKnNBeXsbamGeemWhaS80_oLGeSZzkv1OejfIJmMT4TQmghBKflKZowphSjBT9D8c_ff_DyDT-uzWBN121xgOi7ERocrVt2kNXQdfjh_gpHeNmAq1M1MSOYLmJ4XSc8Wu_wCgYIfgkO7LDF1uFhBXjY9D7g3tbBgxtt8K4HN3xBJ23qhtk-TtHvnz-erm-zxa-bu-urRVYXXAwZF6SqFDCQqqkVpQQq03JRSylbIEKKhuXSpBRImfOSEqVA5S1pJCmqsmFsir7vdNebqoemTqOD6fQ62N6ErfbG6o8vzq700o9aEV6WjCeBr3uB4NPtcdC9je__YRz4TdQ5p0IVVORlQuc7NJ0aY4D2MIYS_W6W3pml92alhovj5Q74f2vYG-7Gle0</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Lee, Youjin</creator><creator>Bogdanoff, Derek</creator><creator>Wang, Yutong</creator><creator>Hartoularos, George C</creator><creator>Woo, Jonathan M</creator><creator>Mowery, Cody T</creator><creator>Nisonoff, Hunter M</creator><creator>Lee, David S</creator><creator>Sun, Yang</creator><creator>Lee, James</creator><creator>Mehdizadeh, Sadaf</creator><creator>Cantlon, Joshua</creator><creator>Shifrut, Eric</creator><creator>Ngyuen, David N</creator><creator>Roth, Theodore L</creator><creator>Song, Yun S</creator><creator>Marson, Alexander</creator><creator>Chow, Eric D</creator><creator>Ye, Chun Jimmie</creator><general>American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7796-7779</orcidid><orcidid>https://orcid.org/0000-0002-2489-1122</orcidid><orcidid>https://orcid.org/0000-0001-6827-0128</orcidid><orcidid>https://orcid.org/0000-0003-1357-8111</orcidid><orcidid>https://orcid.org/0000-0001-6808-2717</orcidid><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0002-1762-1677</orcidid><orcidid>https://orcid.org/0000-0002-0734-9868</orcidid><orcidid>https://orcid.org/0000-0003-2939-013X</orcidid><orcidid>https://orcid.org/0000-0001-6539-4272</orcidid><orcidid>https://orcid.org/0000-0001-6560-3783</orcidid><orcidid>https://orcid.org/0000-0002-2734-5776</orcidid><orcidid>https://orcid.org/0000-0003-1700-3737</orcidid><orcidid>https://orcid.org/0000-0002-9344-8060</orcidid><orcidid>https://orcid.org/0000-0001-6980-2368</orcidid><orcidid>https://orcid.org/0000-0001-8079-918X</orcidid></search><sort><creationdate>20210401</creationdate><title>XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment</title><author>Lee, Youjin ; Bogdanoff, Derek ; Wang, Yutong ; Hartoularos, George C ; Woo, Jonathan M ; Mowery, Cody T ; Nisonoff, Hunter M ; Lee, David S ; Sun, Yang ; Lee, James ; Mehdizadeh, Sadaf ; Cantlon, Joshua ; Shifrut, Eric ; Ngyuen, David N ; Roth, Theodore L ; Song, Yun S ; Marson, Alexander ; Chow, Eric D ; Ye, Chun Jimmie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-560bb8e3e78dc8110ebaf56c777fe0676d327afe0e092591088e82f0d704b9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Cancer</topic><topic>Gene Expression Profiling</topic><topic>Mice</topic><topic>Neoplasms - genetics</topic><topic>SciAdv r-articles</topic><topic>Sequence Analysis, RNA</topic><topic>Single-Cell Analysis</topic><topic>Systems Biology</topic><topic>Transcriptome</topic><topic>Tumor Microenvironment - genetics</topic><topic>Whole Exome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Youjin</creatorcontrib><creatorcontrib>Bogdanoff, Derek</creatorcontrib><creatorcontrib>Wang, Yutong</creatorcontrib><creatorcontrib>Hartoularos, George C</creatorcontrib><creatorcontrib>Woo, Jonathan M</creatorcontrib><creatorcontrib>Mowery, Cody T</creatorcontrib><creatorcontrib>Nisonoff, Hunter M</creatorcontrib><creatorcontrib>Lee, David S</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Lee, James</creatorcontrib><creatorcontrib>Mehdizadeh, Sadaf</creatorcontrib><creatorcontrib>Cantlon, Joshua</creatorcontrib><creatorcontrib>Shifrut, Eric</creatorcontrib><creatorcontrib>Ngyuen, David N</creatorcontrib><creatorcontrib>Roth, Theodore L</creatorcontrib><creatorcontrib>Song, Yun S</creatorcontrib><creatorcontrib>Marson, Alexander</creatorcontrib><creatorcontrib>Chow, Eric D</creatorcontrib><creatorcontrib>Ye, Chun Jimmie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Youjin</au><au>Bogdanoff, Derek</au><au>Wang, Yutong</au><au>Hartoularos, George C</au><au>Woo, Jonathan M</au><au>Mowery, Cody T</au><au>Nisonoff, Hunter M</au><au>Lee, David S</au><au>Sun, Yang</au><au>Lee, James</au><au>Mehdizadeh, Sadaf</au><au>Cantlon, Joshua</au><au>Shifrut, Eric</au><au>Ngyuen, David N</au><au>Roth, Theodore L</au><au>Song, Yun S</au><au>Marson, Alexander</au><au>Chow, Eric D</au><au>Ye, Chun Jimmie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>7</volume><issue>17</issue><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Single-cell RNA sequencing (scRNA-seq) of tissues has revealed remarkable heterogeneity of cell types and states but does not provide information on the spatial organization of cells. To better understand how individual cells function within an anatomical space, we developed XYZeq, a workflow that encodes spatial metadata into scRNA-seq libraries. We used XYZeq to profile mouse tumor models to capture spatially barcoded transcriptomes from tens of thousands of cells. Analyses of these data revealed the spatial distribution of distinct cell types and a cell migration-associated transcriptomic program in tumor-associated mesenchymal stem cells (MSCs). Furthermore, we identify localized expression of tumor suppressor genes by MSCs that vary with proximity to the tumor core. We demonstrate that XYZeq can be used to map the transcriptome and spatial localization of individual cells in situ to reveal how cell composition and cell states can be affected by location within complex pathological tissue.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>33883145</pmid><doi>10.1126/sciadv.abg4755</doi><orcidid>https://orcid.org/0000-0001-7796-7779</orcidid><orcidid>https://orcid.org/0000-0002-2489-1122</orcidid><orcidid>https://orcid.org/0000-0001-6827-0128</orcidid><orcidid>https://orcid.org/0000-0003-1357-8111</orcidid><orcidid>https://orcid.org/0000-0001-6808-2717</orcidid><orcidid>https://orcid.org/0000-0002-3970-9573</orcidid><orcidid>https://orcid.org/0000-0002-1762-1677</orcidid><orcidid>https://orcid.org/0000-0002-0734-9868</orcidid><orcidid>https://orcid.org/0000-0003-2939-013X</orcidid><orcidid>https://orcid.org/0000-0001-6539-4272</orcidid><orcidid>https://orcid.org/0000-0001-6560-3783</orcidid><orcidid>https://orcid.org/0000-0002-2734-5776</orcidid><orcidid>https://orcid.org/0000-0003-1700-3737</orcidid><orcidid>https://orcid.org/0000-0002-9344-8060</orcidid><orcidid>https://orcid.org/0000-0001-6980-2368</orcidid><orcidid>https://orcid.org/0000-0001-8079-918X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2021-04, Vol.7 (17)
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059935
source Open Access: PubMed Central; MEDLINE; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ)
subjects Animals
Cancer
Gene Expression Profiling
Mice
Neoplasms - genetics
SciAdv r-articles
Sequence Analysis, RNA
Single-Cell Analysis
Systems Biology
Transcriptome
Tumor Microenvironment - genetics
Whole Exome Sequencing
title XYZeq: Spatially resolved single-cell RNA sequencing reveals expression heterogeneity in the tumor microenvironment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A43%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XYZeq:%20Spatially%20resolved%20single-cell%20RNA%20sequencing%20reveals%20expression%20heterogeneity%20in%20the%20tumor%20microenvironment&rft.jtitle=Science%20advances&rft.au=Lee,%20Youjin&rft.date=2021-04-01&rft.volume=7&rft.issue=17&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.abg4755&rft_dat=%3Cproquest_pubme%3E2516841629%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516841629&rft_id=info:pmid/33883145&rfr_iscdi=true