Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations

Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2021-04, Vol.108 (4), p.656-668
Hauptverfasser: Martin, Alicia R., Atkinson, Elizabeth G., Chapman, Sinéad B., Stevenson, Anne, Stroud, Rocky E., Abebe, Tamrat, Akena, Dickens, Alemayehu, Melkam, Ashaba, Fred K., Atwoli, Lukoye, Bowers, Tera, Chibnik, Lori B., Daly, Mark J., DeSmet, Timothy, Dodge, Sheila, Fekadu, Abebaw, Ferriera, Steven, Gelaye, Bizu, Gichuru, Stella, Injera, Wilfred E., James, Roxanne, Kariuki, Symon M., Kigen, Gabriel, Koenen, Karestan C., Kwobah, Edith, Kyebuzibwa, Joseph, Majara, Lerato, Musinguzi, Henry, Mwema, Rehema M., Neale, Benjamin M., Newman, Carter P., Newton, Charles R.J.C., Pickrell, Joseph K., Ramesar, Raj, Shiferaw, Welelta, Stein, Dan J., Teferra, Solomon, van der Merwe, Celia, Zingela, Zukiswa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 668
container_issue 4
container_start_page 656
container_title American journal of human genetics
container_volume 108
creator Martin, Alicia R.
Atkinson, Elizabeth G.
Chapman, Sinéad B.
Stevenson, Anne
Stroud, Rocky E.
Abebe, Tamrat
Akena, Dickens
Alemayehu, Melkam
Ashaba, Fred K.
Atwoli, Lukoye
Bowers, Tera
Chibnik, Lori B.
Daly, Mark J.
DeSmet, Timothy
Dodge, Sheila
Fekadu, Abebaw
Ferriera, Steven
Gelaye, Bizu
Gichuru, Stella
Injera, Wilfred E.
James, Roxanne
Kariuki, Symon M.
Kigen, Gabriel
Koenen, Karestan C.
Kwobah, Edith
Kyebuzibwa, Joseph
Majara, Lerato
Musinguzi, Henry
Mwema, Rehema M.
Neale, Benjamin M.
Newman, Carter P.
Newton, Charles R.J.C.
Pickrell, Joseph K.
Ramesar, Raj
Shiferaw, Welelta
Stein, Dan J.
Teferra, Solomon
van der Merwe, Celia
Zingela, Zukiswa
description Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.
doi_str_mv 10.1016/j.ajhg.2021.03.012
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929721000963</els_id><sourcerecordid>S0002929721000963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</originalsourceid><addsrcrecordid>eNp9kN1u1DAQhS0EotvCC3BR-QWSju04caSqEqroj7QSN3BtOc5k65DaqZ1N1bfHy0IFN1zNSHPOmZmPkE8MSgasvhhLMz7sSg6clSBKYPwN2TApmqKuQb4lGwDgRcvb5oScpjQCMKZAvCcnQjQNSGg2ZNyG58KGFaPZIU34tEdvnd9RG9JS4DCgXdyK0wvtccl9oj98ePbU-J76bJvoaqIziwueOk_3vscYcY6Y0C_Y0znM--nXOH0g7wYzJfz4u56R7zdfvl3fFduvt_fXn7eFraRcigFFpbpK8prXVWW4ggoGHFrVAANQUg1SQSeNEHXXt9ihUlzxzqJUEipTizNydcyd990j9jYfEs2k5-geTXzRwTj978S7B70Lq1YgW9FADuDHABtDShGHVy8DfSCvR30grw_kNQidyWfT-d9bXy1_UGfB5VGA-ffVYdTJugwbexczWN0H97_8n0PzmFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa</creator><creatorcontrib>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa ; the NeuroGAP-Psychosis Study Team ; NeuroGAP-Psychosis Study Team</creatorcontrib><description>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2021.03.012</identifier><identifier>PMID: 33770507</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Africa ; cost comparison ; DNA Mutational Analysis - economics ; DNA Mutational Analysis - methods ; DNA Mutational Analysis - standards ; Genetic Variation - genetics ; Genetics, Population - economics ; Genetics, Population - methods ; Genome, Human - genetics ; Genome-Wide Association Study ; GWAS ; GWAS arrays ; Health Equity ; Humans ; low-coverage sequencing ; Microbiota ; study design ; Whole Genome Sequencing - economics ; Whole Genome Sequencing - standards ; whole-genome sequencing</subject><ispartof>American journal of human genetics, 2021-04, Vol.108 (4), p.656-668</ispartof><rights>2021 American Society of Human Genetics</rights><rights>Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 American Society of Human Genetics. 2021 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</citedby><cites>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</cites><orcidid>0000-0003-0241-3522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059370/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajhg.2021.03.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27926,27927,45997,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Alicia R.</creatorcontrib><creatorcontrib>Atkinson, Elizabeth G.</creatorcontrib><creatorcontrib>Chapman, Sinéad B.</creatorcontrib><creatorcontrib>Stevenson, Anne</creatorcontrib><creatorcontrib>Stroud, Rocky E.</creatorcontrib><creatorcontrib>Abebe, Tamrat</creatorcontrib><creatorcontrib>Akena, Dickens</creatorcontrib><creatorcontrib>Alemayehu, Melkam</creatorcontrib><creatorcontrib>Ashaba, Fred K.</creatorcontrib><creatorcontrib>Atwoli, Lukoye</creatorcontrib><creatorcontrib>Bowers, Tera</creatorcontrib><creatorcontrib>Chibnik, Lori B.</creatorcontrib><creatorcontrib>Daly, Mark J.</creatorcontrib><creatorcontrib>DeSmet, Timothy</creatorcontrib><creatorcontrib>Dodge, Sheila</creatorcontrib><creatorcontrib>Fekadu, Abebaw</creatorcontrib><creatorcontrib>Ferriera, Steven</creatorcontrib><creatorcontrib>Gelaye, Bizu</creatorcontrib><creatorcontrib>Gichuru, Stella</creatorcontrib><creatorcontrib>Injera, Wilfred E.</creatorcontrib><creatorcontrib>James, Roxanne</creatorcontrib><creatorcontrib>Kariuki, Symon M.</creatorcontrib><creatorcontrib>Kigen, Gabriel</creatorcontrib><creatorcontrib>Koenen, Karestan C.</creatorcontrib><creatorcontrib>Kwobah, Edith</creatorcontrib><creatorcontrib>Kyebuzibwa, Joseph</creatorcontrib><creatorcontrib>Majara, Lerato</creatorcontrib><creatorcontrib>Musinguzi, Henry</creatorcontrib><creatorcontrib>Mwema, Rehema M.</creatorcontrib><creatorcontrib>Neale, Benjamin M.</creatorcontrib><creatorcontrib>Newman, Carter P.</creatorcontrib><creatorcontrib>Newton, Charles R.J.C.</creatorcontrib><creatorcontrib>Pickrell, Joseph K.</creatorcontrib><creatorcontrib>Ramesar, Raj</creatorcontrib><creatorcontrib>Shiferaw, Welelta</creatorcontrib><creatorcontrib>Stein, Dan J.</creatorcontrib><creatorcontrib>Teferra, Solomon</creatorcontrib><creatorcontrib>van der Merwe, Celia</creatorcontrib><creatorcontrib>Zingela, Zukiswa</creatorcontrib><creatorcontrib>the NeuroGAP-Psychosis Study Team</creatorcontrib><creatorcontrib>NeuroGAP-Psychosis Study Team</creatorcontrib><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</description><subject>Africa</subject><subject>cost comparison</subject><subject>DNA Mutational Analysis - economics</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA Mutational Analysis - standards</subject><subject>Genetic Variation - genetics</subject><subject>Genetics, Population - economics</subject><subject>Genetics, Population - methods</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study</subject><subject>GWAS</subject><subject>GWAS arrays</subject><subject>Health Equity</subject><subject>Humans</subject><subject>low-coverage sequencing</subject><subject>Microbiota</subject><subject>study design</subject><subject>Whole Genome Sequencing - economics</subject><subject>Whole Genome Sequencing - standards</subject><subject>whole-genome sequencing</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1u1DAQhS0EotvCC3BR-QWSju04caSqEqroj7QSN3BtOc5k65DaqZ1N1bfHy0IFN1zNSHPOmZmPkE8MSgasvhhLMz7sSg6clSBKYPwN2TApmqKuQb4lGwDgRcvb5oScpjQCMKZAvCcnQjQNSGg2ZNyG58KGFaPZIU34tEdvnd9RG9JS4DCgXdyK0wvtccl9oj98ePbU-J76bJvoaqIziwueOk_3vscYcY6Y0C_Y0znM--nXOH0g7wYzJfz4u56R7zdfvl3fFduvt_fXn7eFraRcigFFpbpK8prXVWW4ggoGHFrVAANQUg1SQSeNEHXXt9ihUlzxzqJUEipTizNydcyd990j9jYfEs2k5-geTXzRwTj978S7B70Lq1YgW9FADuDHABtDShGHVy8DfSCvR30grw_kNQidyWfT-d9bXy1_UGfB5VGA-ffVYdTJugwbexczWN0H97_8n0PzmFU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Martin, Alicia R.</creator><creator>Atkinson, Elizabeth G.</creator><creator>Chapman, Sinéad B.</creator><creator>Stevenson, Anne</creator><creator>Stroud, Rocky E.</creator><creator>Abebe, Tamrat</creator><creator>Akena, Dickens</creator><creator>Alemayehu, Melkam</creator><creator>Ashaba, Fred K.</creator><creator>Atwoli, Lukoye</creator><creator>Bowers, Tera</creator><creator>Chibnik, Lori B.</creator><creator>Daly, Mark J.</creator><creator>DeSmet, Timothy</creator><creator>Dodge, Sheila</creator><creator>Fekadu, Abebaw</creator><creator>Ferriera, Steven</creator><creator>Gelaye, Bizu</creator><creator>Gichuru, Stella</creator><creator>Injera, Wilfred E.</creator><creator>James, Roxanne</creator><creator>Kariuki, Symon M.</creator><creator>Kigen, Gabriel</creator><creator>Koenen, Karestan C.</creator><creator>Kwobah, Edith</creator><creator>Kyebuzibwa, Joseph</creator><creator>Majara, Lerato</creator><creator>Musinguzi, Henry</creator><creator>Mwema, Rehema M.</creator><creator>Neale, Benjamin M.</creator><creator>Newman, Carter P.</creator><creator>Newton, Charles R.J.C.</creator><creator>Pickrell, Joseph K.</creator><creator>Ramesar, Raj</creator><creator>Shiferaw, Welelta</creator><creator>Stein, Dan J.</creator><creator>Teferra, Solomon</creator><creator>van der Merwe, Celia</creator><creator>Zingela, Zukiswa</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0241-3522</orcidid></search><sort><creationdate>20210401</creationdate><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><author>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Africa</topic><topic>cost comparison</topic><topic>DNA Mutational Analysis - economics</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA Mutational Analysis - standards</topic><topic>Genetic Variation - genetics</topic><topic>Genetics, Population - economics</topic><topic>Genetics, Population - methods</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study</topic><topic>GWAS</topic><topic>GWAS arrays</topic><topic>Health Equity</topic><topic>Humans</topic><topic>low-coverage sequencing</topic><topic>Microbiota</topic><topic>study design</topic><topic>Whole Genome Sequencing - economics</topic><topic>Whole Genome Sequencing - standards</topic><topic>whole-genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Alicia R.</creatorcontrib><creatorcontrib>Atkinson, Elizabeth G.</creatorcontrib><creatorcontrib>Chapman, Sinéad B.</creatorcontrib><creatorcontrib>Stevenson, Anne</creatorcontrib><creatorcontrib>Stroud, Rocky E.</creatorcontrib><creatorcontrib>Abebe, Tamrat</creatorcontrib><creatorcontrib>Akena, Dickens</creatorcontrib><creatorcontrib>Alemayehu, Melkam</creatorcontrib><creatorcontrib>Ashaba, Fred K.</creatorcontrib><creatorcontrib>Atwoli, Lukoye</creatorcontrib><creatorcontrib>Bowers, Tera</creatorcontrib><creatorcontrib>Chibnik, Lori B.</creatorcontrib><creatorcontrib>Daly, Mark J.</creatorcontrib><creatorcontrib>DeSmet, Timothy</creatorcontrib><creatorcontrib>Dodge, Sheila</creatorcontrib><creatorcontrib>Fekadu, Abebaw</creatorcontrib><creatorcontrib>Ferriera, Steven</creatorcontrib><creatorcontrib>Gelaye, Bizu</creatorcontrib><creatorcontrib>Gichuru, Stella</creatorcontrib><creatorcontrib>Injera, Wilfred E.</creatorcontrib><creatorcontrib>James, Roxanne</creatorcontrib><creatorcontrib>Kariuki, Symon M.</creatorcontrib><creatorcontrib>Kigen, Gabriel</creatorcontrib><creatorcontrib>Koenen, Karestan C.</creatorcontrib><creatorcontrib>Kwobah, Edith</creatorcontrib><creatorcontrib>Kyebuzibwa, Joseph</creatorcontrib><creatorcontrib>Majara, Lerato</creatorcontrib><creatorcontrib>Musinguzi, Henry</creatorcontrib><creatorcontrib>Mwema, Rehema M.</creatorcontrib><creatorcontrib>Neale, Benjamin M.</creatorcontrib><creatorcontrib>Newman, Carter P.</creatorcontrib><creatorcontrib>Newton, Charles R.J.C.</creatorcontrib><creatorcontrib>Pickrell, Joseph K.</creatorcontrib><creatorcontrib>Ramesar, Raj</creatorcontrib><creatorcontrib>Shiferaw, Welelta</creatorcontrib><creatorcontrib>Stein, Dan J.</creatorcontrib><creatorcontrib>Teferra, Solomon</creatorcontrib><creatorcontrib>van der Merwe, Celia</creatorcontrib><creatorcontrib>Zingela, Zukiswa</creatorcontrib><creatorcontrib>the NeuroGAP-Psychosis Study Team</creatorcontrib><creatorcontrib>NeuroGAP-Psychosis Study Team</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Alicia R.</au><au>Atkinson, Elizabeth G.</au><au>Chapman, Sinéad B.</au><au>Stevenson, Anne</au><au>Stroud, Rocky E.</au><au>Abebe, Tamrat</au><au>Akena, Dickens</au><au>Alemayehu, Melkam</au><au>Ashaba, Fred K.</au><au>Atwoli, Lukoye</au><au>Bowers, Tera</au><au>Chibnik, Lori B.</au><au>Daly, Mark J.</au><au>DeSmet, Timothy</au><au>Dodge, Sheila</au><au>Fekadu, Abebaw</au><au>Ferriera, Steven</au><au>Gelaye, Bizu</au><au>Gichuru, Stella</au><au>Injera, Wilfred E.</au><au>James, Roxanne</au><au>Kariuki, Symon M.</au><au>Kigen, Gabriel</au><au>Koenen, Karestan C.</au><au>Kwobah, Edith</au><au>Kyebuzibwa, Joseph</au><au>Majara, Lerato</au><au>Musinguzi, Henry</au><au>Mwema, Rehema M.</au><au>Neale, Benjamin M.</au><au>Newman, Carter P.</au><au>Newton, Charles R.J.C.</au><au>Pickrell, Joseph K.</au><au>Ramesar, Raj</au><au>Shiferaw, Welelta</au><au>Stein, Dan J.</au><au>Teferra, Solomon</au><au>van der Merwe, Celia</au><au>Zingela, Zukiswa</au><aucorp>the NeuroGAP-Psychosis Study Team</aucorp><aucorp>NeuroGAP-Psychosis Study Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>108</volume><issue>4</issue><spage>656</spage><epage>668</epage><pages>656-668</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33770507</pmid><doi>10.1016/j.ajhg.2021.03.012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0241-3522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2021-04, Vol.108 (4), p.656-668
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059370
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Africa
cost comparison
DNA Mutational Analysis - economics
DNA Mutational Analysis - methods
DNA Mutational Analysis - standards
Genetic Variation - genetics
Genetics, Population - economics
Genetics, Population - methods
Genome, Human - genetics
Genome-Wide Association Study
GWAS
GWAS arrays
Health Equity
Humans
low-coverage sequencing
Microbiota
study design
Whole Genome Sequencing - economics
Whole Genome Sequencing - standards
whole-genome sequencing
title Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-coverage%20sequencing%20cost-effectively%20detects%20known%20and%20novel%20variation%20in%20underrepresented%20populations&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Martin,%20Alicia%20R.&rft.aucorp=the%20NeuroGAP-Psychosis%20Study%20Team&rft.date=2021-04-01&rft.volume=108&rft.issue=4&rft.spage=656&rft.epage=668&rft.pages=656-668&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2021.03.012&rft_dat=%3Celsevier_pubme%3ES0002929721000963%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33770507&rft_els_id=S0002929721000963&rfr_iscdi=true