Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations
Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2021-04, Vol.108 (4), p.656-668 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 668 |
---|---|
container_issue | 4 |
container_start_page | 656 |
container_title | American journal of human genetics |
container_volume | 108 |
creator | Martin, Alicia R. Atkinson, Elizabeth G. Chapman, Sinéad B. Stevenson, Anne Stroud, Rocky E. Abebe, Tamrat Akena, Dickens Alemayehu, Melkam Ashaba, Fred K. Atwoli, Lukoye Bowers, Tera Chibnik, Lori B. Daly, Mark J. DeSmet, Timothy Dodge, Sheila Fekadu, Abebaw Ferriera, Steven Gelaye, Bizu Gichuru, Stella Injera, Wilfred E. James, Roxanne Kariuki, Symon M. Kigen, Gabriel Koenen, Karestan C. Kwobah, Edith Kyebuzibwa, Joseph Majara, Lerato Musinguzi, Henry Mwema, Rehema M. Neale, Benjamin M. Newman, Carter P. Newton, Charles R.J.C. Pickrell, Joseph K. Ramesar, Raj Shiferaw, Welelta Stein, Dan J. Teferra, Solomon van der Merwe, Celia Zingela, Zukiswa |
description | Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches. |
doi_str_mv | 10.1016/j.ajhg.2021.03.012 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929721000963</els_id><sourcerecordid>S0002929721000963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</originalsourceid><addsrcrecordid>eNp9kN1u1DAQhS0EotvCC3BR-QWSju04caSqEqroj7QSN3BtOc5k65DaqZ1N1bfHy0IFN1zNSHPOmZmPkE8MSgasvhhLMz7sSg6clSBKYPwN2TApmqKuQb4lGwDgRcvb5oScpjQCMKZAvCcnQjQNSGg2ZNyG58KGFaPZIU34tEdvnd9RG9JS4DCgXdyK0wvtccl9oj98ePbU-J76bJvoaqIziwueOk_3vscYcY6Y0C_Y0znM--nXOH0g7wYzJfz4u56R7zdfvl3fFduvt_fXn7eFraRcigFFpbpK8prXVWW4ggoGHFrVAANQUg1SQSeNEHXXt9ihUlzxzqJUEipTizNydcyd990j9jYfEs2k5-geTXzRwTj978S7B70Lq1YgW9FADuDHABtDShGHVy8DfSCvR30grw_kNQidyWfT-d9bXy1_UGfB5VGA-ffVYdTJugwbexczWN0H97_8n0PzmFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa</creator><creatorcontrib>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa ; the NeuroGAP-Psychosis Study Team ; NeuroGAP-Psychosis Study Team</creatorcontrib><description>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2021.03.012</identifier><identifier>PMID: 33770507</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Africa ; cost comparison ; DNA Mutational Analysis - economics ; DNA Mutational Analysis - methods ; DNA Mutational Analysis - standards ; Genetic Variation - genetics ; Genetics, Population - economics ; Genetics, Population - methods ; Genome, Human - genetics ; Genome-Wide Association Study ; GWAS ; GWAS arrays ; Health Equity ; Humans ; low-coverage sequencing ; Microbiota ; study design ; Whole Genome Sequencing - economics ; Whole Genome Sequencing - standards ; whole-genome sequencing</subject><ispartof>American journal of human genetics, 2021-04, Vol.108 (4), p.656-668</ispartof><rights>2021 American Society of Human Genetics</rights><rights>Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2021 American Society of Human Genetics. 2021 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</citedby><cites>FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</cites><orcidid>0000-0003-0241-3522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059370/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajhg.2021.03.012$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27926,27927,45997,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Alicia R.</creatorcontrib><creatorcontrib>Atkinson, Elizabeth G.</creatorcontrib><creatorcontrib>Chapman, Sinéad B.</creatorcontrib><creatorcontrib>Stevenson, Anne</creatorcontrib><creatorcontrib>Stroud, Rocky E.</creatorcontrib><creatorcontrib>Abebe, Tamrat</creatorcontrib><creatorcontrib>Akena, Dickens</creatorcontrib><creatorcontrib>Alemayehu, Melkam</creatorcontrib><creatorcontrib>Ashaba, Fred K.</creatorcontrib><creatorcontrib>Atwoli, Lukoye</creatorcontrib><creatorcontrib>Bowers, Tera</creatorcontrib><creatorcontrib>Chibnik, Lori B.</creatorcontrib><creatorcontrib>Daly, Mark J.</creatorcontrib><creatorcontrib>DeSmet, Timothy</creatorcontrib><creatorcontrib>Dodge, Sheila</creatorcontrib><creatorcontrib>Fekadu, Abebaw</creatorcontrib><creatorcontrib>Ferriera, Steven</creatorcontrib><creatorcontrib>Gelaye, Bizu</creatorcontrib><creatorcontrib>Gichuru, Stella</creatorcontrib><creatorcontrib>Injera, Wilfred E.</creatorcontrib><creatorcontrib>James, Roxanne</creatorcontrib><creatorcontrib>Kariuki, Symon M.</creatorcontrib><creatorcontrib>Kigen, Gabriel</creatorcontrib><creatorcontrib>Koenen, Karestan C.</creatorcontrib><creatorcontrib>Kwobah, Edith</creatorcontrib><creatorcontrib>Kyebuzibwa, Joseph</creatorcontrib><creatorcontrib>Majara, Lerato</creatorcontrib><creatorcontrib>Musinguzi, Henry</creatorcontrib><creatorcontrib>Mwema, Rehema M.</creatorcontrib><creatorcontrib>Neale, Benjamin M.</creatorcontrib><creatorcontrib>Newman, Carter P.</creatorcontrib><creatorcontrib>Newton, Charles R.J.C.</creatorcontrib><creatorcontrib>Pickrell, Joseph K.</creatorcontrib><creatorcontrib>Ramesar, Raj</creatorcontrib><creatorcontrib>Shiferaw, Welelta</creatorcontrib><creatorcontrib>Stein, Dan J.</creatorcontrib><creatorcontrib>Teferra, Solomon</creatorcontrib><creatorcontrib>van der Merwe, Celia</creatorcontrib><creatorcontrib>Zingela, Zukiswa</creatorcontrib><creatorcontrib>the NeuroGAP-Psychosis Study Team</creatorcontrib><creatorcontrib>NeuroGAP-Psychosis Study Team</creatorcontrib><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</description><subject>Africa</subject><subject>cost comparison</subject><subject>DNA Mutational Analysis - economics</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA Mutational Analysis - standards</subject><subject>Genetic Variation - genetics</subject><subject>Genetics, Population - economics</subject><subject>Genetics, Population - methods</subject><subject>Genome, Human - genetics</subject><subject>Genome-Wide Association Study</subject><subject>GWAS</subject><subject>GWAS arrays</subject><subject>Health Equity</subject><subject>Humans</subject><subject>low-coverage sequencing</subject><subject>Microbiota</subject><subject>study design</subject><subject>Whole Genome Sequencing - economics</subject><subject>Whole Genome Sequencing - standards</subject><subject>whole-genome sequencing</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kN1u1DAQhS0EotvCC3BR-QWSju04caSqEqroj7QSN3BtOc5k65DaqZ1N1bfHy0IFN1zNSHPOmZmPkE8MSgasvhhLMz7sSg6clSBKYPwN2TApmqKuQb4lGwDgRcvb5oScpjQCMKZAvCcnQjQNSGg2ZNyG58KGFaPZIU34tEdvnd9RG9JS4DCgXdyK0wvtccl9oj98ePbU-J76bJvoaqIziwueOk_3vscYcY6Y0C_Y0znM--nXOH0g7wYzJfz4u56R7zdfvl3fFduvt_fXn7eFraRcigFFpbpK8prXVWW4ggoGHFrVAANQUg1SQSeNEHXXt9ihUlzxzqJUEipTizNydcyd990j9jYfEs2k5-geTXzRwTj978S7B70Lq1YgW9FADuDHABtDShGHVy8DfSCvR30grw_kNQidyWfT-d9bXy1_UGfB5VGA-ffVYdTJugwbexczWN0H97_8n0PzmFU</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Martin, Alicia R.</creator><creator>Atkinson, Elizabeth G.</creator><creator>Chapman, Sinéad B.</creator><creator>Stevenson, Anne</creator><creator>Stroud, Rocky E.</creator><creator>Abebe, Tamrat</creator><creator>Akena, Dickens</creator><creator>Alemayehu, Melkam</creator><creator>Ashaba, Fred K.</creator><creator>Atwoli, Lukoye</creator><creator>Bowers, Tera</creator><creator>Chibnik, Lori B.</creator><creator>Daly, Mark J.</creator><creator>DeSmet, Timothy</creator><creator>Dodge, Sheila</creator><creator>Fekadu, Abebaw</creator><creator>Ferriera, Steven</creator><creator>Gelaye, Bizu</creator><creator>Gichuru, Stella</creator><creator>Injera, Wilfred E.</creator><creator>James, Roxanne</creator><creator>Kariuki, Symon M.</creator><creator>Kigen, Gabriel</creator><creator>Koenen, Karestan C.</creator><creator>Kwobah, Edith</creator><creator>Kyebuzibwa, Joseph</creator><creator>Majara, Lerato</creator><creator>Musinguzi, Henry</creator><creator>Mwema, Rehema M.</creator><creator>Neale, Benjamin M.</creator><creator>Newman, Carter P.</creator><creator>Newton, Charles R.J.C.</creator><creator>Pickrell, Joseph K.</creator><creator>Ramesar, Raj</creator><creator>Shiferaw, Welelta</creator><creator>Stein, Dan J.</creator><creator>Teferra, Solomon</creator><creator>van der Merwe, Celia</creator><creator>Zingela, Zukiswa</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0241-3522</orcidid></search><sort><creationdate>20210401</creationdate><title>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</title><author>Martin, Alicia R. ; Atkinson, Elizabeth G. ; Chapman, Sinéad B. ; Stevenson, Anne ; Stroud, Rocky E. ; Abebe, Tamrat ; Akena, Dickens ; Alemayehu, Melkam ; Ashaba, Fred K. ; Atwoli, Lukoye ; Bowers, Tera ; Chibnik, Lori B. ; Daly, Mark J. ; DeSmet, Timothy ; Dodge, Sheila ; Fekadu, Abebaw ; Ferriera, Steven ; Gelaye, Bizu ; Gichuru, Stella ; Injera, Wilfred E. ; James, Roxanne ; Kariuki, Symon M. ; Kigen, Gabriel ; Koenen, Karestan C. ; Kwobah, Edith ; Kyebuzibwa, Joseph ; Majara, Lerato ; Musinguzi, Henry ; Mwema, Rehema M. ; Neale, Benjamin M. ; Newman, Carter P. ; Newton, Charles R.J.C. ; Pickrell, Joseph K. ; Ramesar, Raj ; Shiferaw, Welelta ; Stein, Dan J. ; Teferra, Solomon ; van der Merwe, Celia ; Zingela, Zukiswa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-fe348b45262644a28040fef9870100858f580b5a336bd9ebe88282bce58504a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Africa</topic><topic>cost comparison</topic><topic>DNA Mutational Analysis - economics</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA Mutational Analysis - standards</topic><topic>Genetic Variation - genetics</topic><topic>Genetics, Population - economics</topic><topic>Genetics, Population - methods</topic><topic>Genome, Human - genetics</topic><topic>Genome-Wide Association Study</topic><topic>GWAS</topic><topic>GWAS arrays</topic><topic>Health Equity</topic><topic>Humans</topic><topic>low-coverage sequencing</topic><topic>Microbiota</topic><topic>study design</topic><topic>Whole Genome Sequencing - economics</topic><topic>Whole Genome Sequencing - standards</topic><topic>whole-genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Alicia R.</creatorcontrib><creatorcontrib>Atkinson, Elizabeth G.</creatorcontrib><creatorcontrib>Chapman, Sinéad B.</creatorcontrib><creatorcontrib>Stevenson, Anne</creatorcontrib><creatorcontrib>Stroud, Rocky E.</creatorcontrib><creatorcontrib>Abebe, Tamrat</creatorcontrib><creatorcontrib>Akena, Dickens</creatorcontrib><creatorcontrib>Alemayehu, Melkam</creatorcontrib><creatorcontrib>Ashaba, Fred K.</creatorcontrib><creatorcontrib>Atwoli, Lukoye</creatorcontrib><creatorcontrib>Bowers, Tera</creatorcontrib><creatorcontrib>Chibnik, Lori B.</creatorcontrib><creatorcontrib>Daly, Mark J.</creatorcontrib><creatorcontrib>DeSmet, Timothy</creatorcontrib><creatorcontrib>Dodge, Sheila</creatorcontrib><creatorcontrib>Fekadu, Abebaw</creatorcontrib><creatorcontrib>Ferriera, Steven</creatorcontrib><creatorcontrib>Gelaye, Bizu</creatorcontrib><creatorcontrib>Gichuru, Stella</creatorcontrib><creatorcontrib>Injera, Wilfred E.</creatorcontrib><creatorcontrib>James, Roxanne</creatorcontrib><creatorcontrib>Kariuki, Symon M.</creatorcontrib><creatorcontrib>Kigen, Gabriel</creatorcontrib><creatorcontrib>Koenen, Karestan C.</creatorcontrib><creatorcontrib>Kwobah, Edith</creatorcontrib><creatorcontrib>Kyebuzibwa, Joseph</creatorcontrib><creatorcontrib>Majara, Lerato</creatorcontrib><creatorcontrib>Musinguzi, Henry</creatorcontrib><creatorcontrib>Mwema, Rehema M.</creatorcontrib><creatorcontrib>Neale, Benjamin M.</creatorcontrib><creatorcontrib>Newman, Carter P.</creatorcontrib><creatorcontrib>Newton, Charles R.J.C.</creatorcontrib><creatorcontrib>Pickrell, Joseph K.</creatorcontrib><creatorcontrib>Ramesar, Raj</creatorcontrib><creatorcontrib>Shiferaw, Welelta</creatorcontrib><creatorcontrib>Stein, Dan J.</creatorcontrib><creatorcontrib>Teferra, Solomon</creatorcontrib><creatorcontrib>van der Merwe, Celia</creatorcontrib><creatorcontrib>Zingela, Zukiswa</creatorcontrib><creatorcontrib>the NeuroGAP-Psychosis Study Team</creatorcontrib><creatorcontrib>NeuroGAP-Psychosis Study Team</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Alicia R.</au><au>Atkinson, Elizabeth G.</au><au>Chapman, Sinéad B.</au><au>Stevenson, Anne</au><au>Stroud, Rocky E.</au><au>Abebe, Tamrat</au><au>Akena, Dickens</au><au>Alemayehu, Melkam</au><au>Ashaba, Fred K.</au><au>Atwoli, Lukoye</au><au>Bowers, Tera</au><au>Chibnik, Lori B.</au><au>Daly, Mark J.</au><au>DeSmet, Timothy</au><au>Dodge, Sheila</au><au>Fekadu, Abebaw</au><au>Ferriera, Steven</au><au>Gelaye, Bizu</au><au>Gichuru, Stella</au><au>Injera, Wilfred E.</au><au>James, Roxanne</au><au>Kariuki, Symon M.</au><au>Kigen, Gabriel</au><au>Koenen, Karestan C.</au><au>Kwobah, Edith</au><au>Kyebuzibwa, Joseph</au><au>Majara, Lerato</au><au>Musinguzi, Henry</au><au>Mwema, Rehema M.</au><au>Neale, Benjamin M.</au><au>Newman, Carter P.</au><au>Newton, Charles R.J.C.</au><au>Pickrell, Joseph K.</au><au>Ramesar, Raj</au><au>Shiferaw, Welelta</au><au>Stein, Dan J.</au><au>Teferra, Solomon</au><au>van der Merwe, Celia</au><au>Zingela, Zukiswa</au><aucorp>the NeuroGAP-Psychosis Study Team</aucorp><aucorp>NeuroGAP-Psychosis Study Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>108</volume><issue>4</issue><spage>656</spage><epage>668</epage><pages>656-668</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Genetic studies in underrepresented populations identify disproportionate numbers of novel associations. However, most genetic studies use genotyping arrays and sequenced reference panels that best capture variation most common in European ancestry populations. To compare data generation strategies best suited for underrepresented populations, we sequenced the whole genomes of 91 individuals to high coverage as part of the Neuropsychiatric Genetics of African Population-Psychosis (NeuroGAP-Psychosis) study with participants from Ethiopia, Kenya, South Africa, and Uganda. We used a downsampling approach to evaluate the quality of two cost-effective data generation strategies, GWAS arrays versus low-coverage sequencing, by calculating the concordance of imputed variants from these technologies with those from deep whole-genome sequencing data. We show that low-coverage sequencing at a depth of ≥4× captures variants of all frequencies more accurately than all commonly used GWAS arrays investigated and at a comparable cost. Lower depths of sequencing (0.5–1×) performed comparably to commonly used low-density GWAS arrays. Low-coverage sequencing is also sensitive to novel variation; 4× sequencing detects 45% of singletons and 95% of common variants identified in high-coverage African whole genomes. Low-coverage sequencing approaches surmount the problems induced by the ascertainment of common genotyping arrays, effectively identify novel variation particularly in underrepresented populations, and present opportunities to enhance variant discovery at a cost similar to traditional approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33770507</pmid><doi>10.1016/j.ajhg.2021.03.012</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0241-3522</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2021-04, Vol.108 (4), p.656-668 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8059370 |
source | MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Africa cost comparison DNA Mutational Analysis - economics DNA Mutational Analysis - methods DNA Mutational Analysis - standards Genetic Variation - genetics Genetics, Population - economics Genetics, Population - methods Genome, Human - genetics Genome-Wide Association Study GWAS GWAS arrays Health Equity Humans low-coverage sequencing Microbiota study design Whole Genome Sequencing - economics Whole Genome Sequencing - standards whole-genome sequencing |
title | Low-coverage sequencing cost-effectively detects known and novel variation in underrepresented populations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T01%3A34%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-coverage%20sequencing%20cost-effectively%20detects%20known%20and%20novel%20variation%20in%20underrepresented%20populations&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Martin,%20Alicia%20R.&rft.aucorp=the%20NeuroGAP-Psychosis%20Study%20Team&rft.date=2021-04-01&rft.volume=108&rft.issue=4&rft.spage=656&rft.epage=668&rft.pages=656-668&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2021.03.012&rft_dat=%3Celsevier_pubme%3ES0002929721000963%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33770507&rft_els_id=S0002929721000963&rfr_iscdi=true |