Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies

Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular therapy 2021-04, Vol.29 (4), p.1625-1638
Hauptverfasser: Breda, Laura, Ghiaccio, Valentina, Tanaka, Naoto, Jarocha, Danuta, Ikawa, Yasuhiro, Abdulmalik, Osheiza, Dong, Alisa, Casu, Carla, Raabe, Tobias D., Shan, Xiaochuan, Danet-Desnoyers, Gwenn A., Doto, Aoife M., Everett, John, Bushman, Frederic D., Radaelli, Enrico, Assenmacher, Charles A., Tarrant, James C., Hoepp, Natalie, Kurita, Ryo, Nakamura, Yukio, Guzikowski, Virginia, Smith-Whitley, Kim, Kwiatkowski, Janet L., Rivella, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1638
container_issue 4
container_start_page 1625
container_title Molecular therapy
container_volume 29
creator Breda, Laura
Ghiaccio, Valentina
Tanaka, Naoto
Jarocha, Danuta
Ikawa, Yasuhiro
Abdulmalik, Osheiza
Dong, Alisa
Casu, Carla
Raabe, Tobias D.
Shan, Xiaochuan
Danet-Desnoyers, Gwenn A.
Doto, Aoife M.
Everett, John
Bushman, Frederic D.
Radaelli, Enrico
Assenmacher, Charles A.
Tarrant, James C.
Hoepp, Natalie
Kurita, Ryo
Nakamura, Yukio
Guzikowski, Virginia
Smith-Whitley, Kim
Kwiatkowski, Janet L.
Rivella, Stefano
description Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation. [Display omitted] Increase of beta-globin expression by gene addition is critical to successfully curing patients with beta-thalassemia and sickle cell disease. Here, Breda and colleagues report genomic features that maximize transgene expression at low genome integration rates, preserving efficacy and safety and potentially reducing the burden of autologous bone marrow transplantation.
doi_str_mv 10.1016/j.ymthe.2020.12.036
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8058492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001620307292</els_id><sourcerecordid>2483816248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-299626bf9ec29283139b1da02f21059c21d71be955dfd1680abd566da6a5348b3</originalsourceid><addsrcrecordid>eNp9kU1v3CAQQFHVqkm3_QWVKo69eAvYUHNopSjql7RSDk3OCMPYZoXNFlgn--_LdtNVe8lpRjDzZuAh9JaSNSVUfNiuD1MeYc0IKydsTWrxDF1SznhFCGuen3MqLtCrlLYlo1yKl-iirjnlnDaX6GEDc3aLi9rjBUwOEV9tfjKCDw68TXh0w4hHmMLgQ-dm7GEBn_C9yyP24R4PMIfJGezmDEPU2YU54b5QcgSdpwLHoccdZF2dCGGn8-ggvUYveu0TvHmMK3T39cvt9fdqc_Ptx_XVpjINl7liUgomul6CYZK1Na1lR60mrGeUcGkYtR9pB5Jz21sqWqI7y4WwWmheN21Xr9DnE3e37yawpmxU3qp20U06HlTQTv1_M7tRDWFRLeFtI1kBvH8ExPBrDymrySUD3usZwj4p1rR1S8UxrFB9KjUxpBShP4-hRB2dqa3640wdnSnKVHFWut79u-G556-kUvDpVFB-HhYHUSXjYDZgXSzKlA3uyQG_AeqGrEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483816248</pqid></control><display><type>article</type><title>Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Breda, Laura ; Ghiaccio, Valentina ; Tanaka, Naoto ; Jarocha, Danuta ; Ikawa, Yasuhiro ; Abdulmalik, Osheiza ; Dong, Alisa ; Casu, Carla ; Raabe, Tobias D. ; Shan, Xiaochuan ; Danet-Desnoyers, Gwenn A. ; Doto, Aoife M. ; Everett, John ; Bushman, Frederic D. ; Radaelli, Enrico ; Assenmacher, Charles A. ; Tarrant, James C. ; Hoepp, Natalie ; Kurita, Ryo ; Nakamura, Yukio ; Guzikowski, Virginia ; Smith-Whitley, Kim ; Kwiatkowski, Janet L. ; Rivella, Stefano</creator><creatorcontrib>Breda, Laura ; Ghiaccio, Valentina ; Tanaka, Naoto ; Jarocha, Danuta ; Ikawa, Yasuhiro ; Abdulmalik, Osheiza ; Dong, Alisa ; Casu, Carla ; Raabe, Tobias D. ; Shan, Xiaochuan ; Danet-Desnoyers, Gwenn A. ; Doto, Aoife M. ; Everett, John ; Bushman, Frederic D. ; Radaelli, Enrico ; Assenmacher, Charles A. ; Tarrant, James C. ; Hoepp, Natalie ; Kurita, Ryo ; Nakamura, Yukio ; Guzikowski, Virginia ; Smith-Whitley, Kim ; Kwiatkowski, Janet L. ; Rivella, Stefano</creatorcontrib><description>Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation. [Display omitted] Increase of beta-globin expression by gene addition is critical to successfully curing patients with beta-thalassemia and sickle cell disease. Here, Breda and colleagues report genomic features that maximize transgene expression at low genome integration rates, preserving efficacy and safety and potentially reducing the burden of autologous bone marrow transplantation.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2020.12.036</identifier><identifier>PMID: 33515514</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anemia, Sickle Cell - blood ; Anemia, Sickle Cell - genetics ; Anemia, Sickle Cell - pathology ; Anemia, Sickle Cell - therapy ; Animals ; beta-globinopathies ; beta-Globins - genetics ; beta-Globins - therapeutic use ; beta-Thalassemia - blood ; beta-Thalassemia - genetics ; beta-Thalassemia - pathology ; beta-Thalassemia - therapy ; Bone Marrow Transplantation ; gene addition ; Gene Expression - genetics ; gene therapy ; Genetic Therapy ; Genetic Vectors - genetics ; Genetic Vectors - pharmacology ; hematopoietic stem cells ; Hemoglobins - genetics ; Heterografts ; Humans ; lentiviral vectors ; Lentivirus - genetics ; Locus Control Region - genetics ; Mice ; Original ; Transduction, Genetic</subject><ispartof>Molecular therapy, 2021-04, Vol.29 (4), p.1625-1638</ispartof><rights>2020 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2020 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The American Society of Gene and Cell Therapy. 2020 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-299626bf9ec29283139b1da02f21059c21d71be955dfd1680abd566da6a5348b3</citedby><cites>FETCH-LOGICAL-c459t-299626bf9ec29283139b1da02f21059c21d71be955dfd1680abd566da6a5348b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058492/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058492/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33515514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breda, Laura</creatorcontrib><creatorcontrib>Ghiaccio, Valentina</creatorcontrib><creatorcontrib>Tanaka, Naoto</creatorcontrib><creatorcontrib>Jarocha, Danuta</creatorcontrib><creatorcontrib>Ikawa, Yasuhiro</creatorcontrib><creatorcontrib>Abdulmalik, Osheiza</creatorcontrib><creatorcontrib>Dong, Alisa</creatorcontrib><creatorcontrib>Casu, Carla</creatorcontrib><creatorcontrib>Raabe, Tobias D.</creatorcontrib><creatorcontrib>Shan, Xiaochuan</creatorcontrib><creatorcontrib>Danet-Desnoyers, Gwenn A.</creatorcontrib><creatorcontrib>Doto, Aoife M.</creatorcontrib><creatorcontrib>Everett, John</creatorcontrib><creatorcontrib>Bushman, Frederic D.</creatorcontrib><creatorcontrib>Radaelli, Enrico</creatorcontrib><creatorcontrib>Assenmacher, Charles A.</creatorcontrib><creatorcontrib>Tarrant, James C.</creatorcontrib><creatorcontrib>Hoepp, Natalie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Nakamura, Yukio</creatorcontrib><creatorcontrib>Guzikowski, Virginia</creatorcontrib><creatorcontrib>Smith-Whitley, Kim</creatorcontrib><creatorcontrib>Kwiatkowski, Janet L.</creatorcontrib><creatorcontrib>Rivella, Stefano</creatorcontrib><title>Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation. [Display omitted] Increase of beta-globin expression by gene addition is critical to successfully curing patients with beta-thalassemia and sickle cell disease. Here, Breda and colleagues report genomic features that maximize transgene expression at low genome integration rates, preserving efficacy and safety and potentially reducing the burden of autologous bone marrow transplantation.</description><subject>Anemia, Sickle Cell - blood</subject><subject>Anemia, Sickle Cell - genetics</subject><subject>Anemia, Sickle Cell - pathology</subject><subject>Anemia, Sickle Cell - therapy</subject><subject>Animals</subject><subject>beta-globinopathies</subject><subject>beta-Globins - genetics</subject><subject>beta-Globins - therapeutic use</subject><subject>beta-Thalassemia - blood</subject><subject>beta-Thalassemia - genetics</subject><subject>beta-Thalassemia - pathology</subject><subject>beta-Thalassemia - therapy</subject><subject>Bone Marrow Transplantation</subject><subject>gene addition</subject><subject>Gene Expression - genetics</subject><subject>gene therapy</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - genetics</subject><subject>Genetic Vectors - pharmacology</subject><subject>hematopoietic stem cells</subject><subject>Hemoglobins - genetics</subject><subject>Heterografts</subject><subject>Humans</subject><subject>lentiviral vectors</subject><subject>Lentivirus - genetics</subject><subject>Locus Control Region - genetics</subject><subject>Mice</subject><subject>Original</subject><subject>Transduction, Genetic</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v3CAQQFHVqkm3_QWVKo69eAvYUHNopSjql7RSDk3OCMPYZoXNFlgn--_LdtNVe8lpRjDzZuAh9JaSNSVUfNiuD1MeYc0IKydsTWrxDF1SznhFCGuen3MqLtCrlLYlo1yKl-iirjnlnDaX6GEDc3aLi9rjBUwOEV9tfjKCDw68TXh0w4hHmMLgQ-dm7GEBn_C9yyP24R4PMIfJGezmDEPU2YU54b5QcgSdpwLHoccdZF2dCGGn8-ggvUYveu0TvHmMK3T39cvt9fdqc_Ptx_XVpjINl7liUgomul6CYZK1Na1lR60mrGeUcGkYtR9pB5Jz21sqWqI7y4WwWmheN21Xr9DnE3e37yawpmxU3qp20U06HlTQTv1_M7tRDWFRLeFtI1kBvH8ExPBrDymrySUD3usZwj4p1rR1S8UxrFB9KjUxpBShP4-hRB2dqa3640wdnSnKVHFWut79u-G556-kUvDpVFB-HhYHUSXjYDZgXSzKlA3uyQG_AeqGrEY</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Breda, Laura</creator><creator>Ghiaccio, Valentina</creator><creator>Tanaka, Naoto</creator><creator>Jarocha, Danuta</creator><creator>Ikawa, Yasuhiro</creator><creator>Abdulmalik, Osheiza</creator><creator>Dong, Alisa</creator><creator>Casu, Carla</creator><creator>Raabe, Tobias D.</creator><creator>Shan, Xiaochuan</creator><creator>Danet-Desnoyers, Gwenn A.</creator><creator>Doto, Aoife M.</creator><creator>Everett, John</creator><creator>Bushman, Frederic D.</creator><creator>Radaelli, Enrico</creator><creator>Assenmacher, Charles A.</creator><creator>Tarrant, James C.</creator><creator>Hoepp, Natalie</creator><creator>Kurita, Ryo</creator><creator>Nakamura, Yukio</creator><creator>Guzikowski, Virginia</creator><creator>Smith-Whitley, Kim</creator><creator>Kwiatkowski, Janet L.</creator><creator>Rivella, Stefano</creator><general>Elsevier Inc</general><general>American Society of Gene &amp; Cell Therapy</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210407</creationdate><title>Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies</title><author>Breda, Laura ; Ghiaccio, Valentina ; Tanaka, Naoto ; Jarocha, Danuta ; Ikawa, Yasuhiro ; Abdulmalik, Osheiza ; Dong, Alisa ; Casu, Carla ; Raabe, Tobias D. ; Shan, Xiaochuan ; Danet-Desnoyers, Gwenn A. ; Doto, Aoife M. ; Everett, John ; Bushman, Frederic D. ; Radaelli, Enrico ; Assenmacher, Charles A. ; Tarrant, James C. ; Hoepp, Natalie ; Kurita, Ryo ; Nakamura, Yukio ; Guzikowski, Virginia ; Smith-Whitley, Kim ; Kwiatkowski, Janet L. ; Rivella, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-299626bf9ec29283139b1da02f21059c21d71be955dfd1680abd566da6a5348b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anemia, Sickle Cell - blood</topic><topic>Anemia, Sickle Cell - genetics</topic><topic>Anemia, Sickle Cell - pathology</topic><topic>Anemia, Sickle Cell - therapy</topic><topic>Animals</topic><topic>beta-globinopathies</topic><topic>beta-Globins - genetics</topic><topic>beta-Globins - therapeutic use</topic><topic>beta-Thalassemia - blood</topic><topic>beta-Thalassemia - genetics</topic><topic>beta-Thalassemia - pathology</topic><topic>beta-Thalassemia - therapy</topic><topic>Bone Marrow Transplantation</topic><topic>gene addition</topic><topic>Gene Expression - genetics</topic><topic>gene therapy</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - genetics</topic><topic>Genetic Vectors - pharmacology</topic><topic>hematopoietic stem cells</topic><topic>Hemoglobins - genetics</topic><topic>Heterografts</topic><topic>Humans</topic><topic>lentiviral vectors</topic><topic>Lentivirus - genetics</topic><topic>Locus Control Region - genetics</topic><topic>Mice</topic><topic>Original</topic><topic>Transduction, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breda, Laura</creatorcontrib><creatorcontrib>Ghiaccio, Valentina</creatorcontrib><creatorcontrib>Tanaka, Naoto</creatorcontrib><creatorcontrib>Jarocha, Danuta</creatorcontrib><creatorcontrib>Ikawa, Yasuhiro</creatorcontrib><creatorcontrib>Abdulmalik, Osheiza</creatorcontrib><creatorcontrib>Dong, Alisa</creatorcontrib><creatorcontrib>Casu, Carla</creatorcontrib><creatorcontrib>Raabe, Tobias D.</creatorcontrib><creatorcontrib>Shan, Xiaochuan</creatorcontrib><creatorcontrib>Danet-Desnoyers, Gwenn A.</creatorcontrib><creatorcontrib>Doto, Aoife M.</creatorcontrib><creatorcontrib>Everett, John</creatorcontrib><creatorcontrib>Bushman, Frederic D.</creatorcontrib><creatorcontrib>Radaelli, Enrico</creatorcontrib><creatorcontrib>Assenmacher, Charles A.</creatorcontrib><creatorcontrib>Tarrant, James C.</creatorcontrib><creatorcontrib>Hoepp, Natalie</creatorcontrib><creatorcontrib>Kurita, Ryo</creatorcontrib><creatorcontrib>Nakamura, Yukio</creatorcontrib><creatorcontrib>Guzikowski, Virginia</creatorcontrib><creatorcontrib>Smith-Whitley, Kim</creatorcontrib><creatorcontrib>Kwiatkowski, Janet L.</creatorcontrib><creatorcontrib>Rivella, Stefano</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breda, Laura</au><au>Ghiaccio, Valentina</au><au>Tanaka, Naoto</au><au>Jarocha, Danuta</au><au>Ikawa, Yasuhiro</au><au>Abdulmalik, Osheiza</au><au>Dong, Alisa</au><au>Casu, Carla</au><au>Raabe, Tobias D.</au><au>Shan, Xiaochuan</au><au>Danet-Desnoyers, Gwenn A.</au><au>Doto, Aoife M.</au><au>Everett, John</au><au>Bushman, Frederic D.</au><au>Radaelli, Enrico</au><au>Assenmacher, Charles A.</au><au>Tarrant, James C.</au><au>Hoepp, Natalie</au><au>Kurita, Ryo</au><au>Nakamura, Yukio</au><au>Guzikowski, Virginia</au><au>Smith-Whitley, Kim</au><au>Kwiatkowski, Janet L.</au><au>Rivella, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>29</volume><issue>4</issue><spage>1625</spage><epage>1638</epage><pages>1625-1638</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Ongoing clinical trials for treatment of beta-globinopathies by gene therapy involve the transfer of the beta-globin gene, which requires integration of three to four copies per genome in most target cells. This high proviral load may increase genome toxicity, potentially limiting the safety of this therapy and relegating its use to total body myeloablation. We hypothesized that introducing an additional hypersensitive site from the locus control region, the complete sequence of the second intron of the beta-globin gene, and the ankyrin insulator may enhance beta-globin expression. We identified a construct, ALS20, that synthesized significantly higher adult hemoglobin levels than those of other constructs currently used in clinical trials. These findings were confirmed in erythroblastic cell lines and in primary cells isolated from sickle cell disease patients. Bone marrow transplantation studies in beta-thalassemia mice revealed that ALS20 was curative at less than one copy per genome. Injection of human CD34+ cells transduced with ALS20 led to safe, long-term, and high polyclonal engraftment in xenograft experiments. Successful treatment of beta-globinopathies with ALS20 could potentially be achieved at less than two copies per genome, minimizing the risk of cytotoxic events and lowering the intensity of myeloablation. [Display omitted] Increase of beta-globin expression by gene addition is critical to successfully curing patients with beta-thalassemia and sickle cell disease. Here, Breda and colleagues report genomic features that maximize transgene expression at low genome integration rates, preserving efficacy and safety and potentially reducing the burden of autologous bone marrow transplantation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33515514</pmid><doi>10.1016/j.ymthe.2020.12.036</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2021-04, Vol.29 (4), p.1625-1638
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8058492
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Anemia, Sickle Cell - blood
Anemia, Sickle Cell - genetics
Anemia, Sickle Cell - pathology
Anemia, Sickle Cell - therapy
Animals
beta-globinopathies
beta-Globins - genetics
beta-Globins - therapeutic use
beta-Thalassemia - blood
beta-Thalassemia - genetics
beta-Thalassemia - pathology
beta-Thalassemia - therapy
Bone Marrow Transplantation
gene addition
Gene Expression - genetics
gene therapy
Genetic Therapy
Genetic Vectors - genetics
Genetic Vectors - pharmacology
hematopoietic stem cells
Hemoglobins - genetics
Heterografts
Humans
lentiviral vectors
Lentivirus - genetics
Locus Control Region - genetics
Mice
Original
Transduction, Genetic
title Lentiviral vector ALS20 yields high hemoglobin levels with low genomic integrations for treatment of beta-globinopathies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A19%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lentiviral%20vector%20ALS20%20yields%20high%20hemoglobin%20levels%20with%20low%20genomic%20integrations%20for%20treatment%20of%20beta-globinopathies&rft.jtitle=Molecular%20therapy&rft.au=Breda,%20Laura&rft.date=2021-04-07&rft.volume=29&rft.issue=4&rft.spage=1625&rft.epage=1638&rft.pages=1625-1638&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2020.12.036&rft_dat=%3Cproquest_pubme%3E2483816248%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483816248&rft_id=info:pmid/33515514&rft_els_id=S1525001620307292&rfr_iscdi=true