Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development

•PCOS is developmentally programmed by in utero androgen (dihydrotestosterone) exposure.•PCOS caused dysregulation of genes related to ovarian function and mitochondria in the ovary.•Ovarian mitochondrial ultrastructure was affected in PCOS mice.•PCOS ovaries consumed more oxygen than the controls.•...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of steroid biochemistry and molecular biology 2021-03, Vol.207, p.105830-105830, Article 105830
Hauptverfasser: Barsky, Maya, Merkison, Jamie, Hosseinzadeh, Pardis, Yang, Liubin, Bruno-Gaston, Janet, Dunn, Jay, Gibbons, William, Blesson, Chellakkan Selvanesan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105830
container_issue
container_start_page 105830
container_title The Journal of steroid biochemistry and molecular biology
container_volume 207
creator Barsky, Maya
Merkison, Jamie
Hosseinzadeh, Pardis
Yang, Liubin
Bruno-Gaston, Janet
Dunn, Jay
Gibbons, William
Blesson, Chellakkan Selvanesan
description •PCOS is developmentally programmed by in utero androgen (dihydrotestosterone) exposure.•PCOS caused dysregulation of genes related to ovarian function and mitochondria in the ovary.•Ovarian mitochondrial ultrastructure was affected in PCOS mice.•PCOS ovaries consumed more oxygen than the controls.•Ovaries of PCOS mice were structurally and functionally compromised at birth. Polycystic ovary syndrome (PCOS) is a common form of anovulatory infertility with a strong hereditary component but no candidate genes have been found. The inheritance pattern may be due to in utero androgen programming on gene expression and mitochondria. Mitochondria are maternally inherited and alterations to mitochondria after fetal androgen exposure may explain one of the mechanisms of fetal programming in PCOS. Our aim was to investigate the role of excessive prenatal androgens in ovarian development by identifying how hyperandrogenemia affects gene expression and mitochondria in neonatal ovary. Pregnant dams were injected with dihydrotestosterone on days 16–18 of pregnancy. Day 0 ovaries were collected for gene expression and mitochondrial studies. RNAseq showed differential gene expressions which were related to mitochondrial dysfunction, fetal gonadal development, oocyte maturation, metabolism, angiogenesis, and PCOS. Top 20 up and downregulated genes were validated with qPCR and Western Blot. Transcriptional pathways involved in folliculogenesis and genes involved in ovarian and mitochondrial function were dysregulated. Further, DHT exposure altered mitochondrial ultrastructure and function by increasing mitochondrial oxygen consumption and decreasing mitochondrial efficiency with increased proton leak within the first day of life. Our data indicates that one path that leads to PCOS begins at birth and is programmed in utero by androgens.
doi_str_mv 10.1016/j.jsbmb.2021.105830
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8056856</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960076021000236</els_id><sourcerecordid>2639583859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-67b2000af1f8696d8a8560718b7cd6ae8b9547d9c489dccd8ec260d44bf56223</originalsourceid><addsrcrecordid>eNp9kV-L1TAQxYMo7nX1EwgS8MWXXvOnSVNBQZZdFRZ82feQJtNrSpvUpL14v72pd13UB58Ck9-cmTMHoZeU7Cmh8u2wH3I3dXtGGC0VoTh5hHZUNW1FGSOP0Y60klSkkeQCPct5IIRwTpun6IJzQYVUZIfGG1jMiOcUD8lMkw8HHHs8x_FkT3nxFsejSSecT8GlOME7fN33YJe8UWarHSBg-DHHvCbAMRQlCGaT3Bq9CdjBEcY4TxCW5-hJb8YML-7fS3R3c3139bm6_frpy9XH28rWqlkq2XSs7Gp62ivZSqeMEpI0VHWNddKA6lpRN64tdOusdQosk8TVddcLyRi_RB_OsvPaTeBsmZzMqOfkp-JFR-P13z_Bf9OHeNSKlKMIWQTe3Auk-H2FvOjJZwvjaALENWtWK66oqpUo6Ot_0CGuKRR3mknellCUaAvFz5RNMecE_cMylOgtTD3oX2HqLUx9DrN0vfrTx0PP7_QK8P4MQDnm0UPS2XoIFpxPJSTtov_vgJ-C3rPN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639583859</pqid></control><display><type>article</type><title>Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Barsky, Maya ; Merkison, Jamie ; Hosseinzadeh, Pardis ; Yang, Liubin ; Bruno-Gaston, Janet ; Dunn, Jay ; Gibbons, William ; Blesson, Chellakkan Selvanesan</creator><creatorcontrib>Barsky, Maya ; Merkison, Jamie ; Hosseinzadeh, Pardis ; Yang, Liubin ; Bruno-Gaston, Janet ; Dunn, Jay ; Gibbons, William ; Blesson, Chellakkan Selvanesan</creatorcontrib><description>•PCOS is developmentally programmed by in utero androgen (dihydrotestosterone) exposure.•PCOS caused dysregulation of genes related to ovarian function and mitochondria in the ovary.•Ovarian mitochondrial ultrastructure was affected in PCOS mice.•PCOS ovaries consumed more oxygen than the controls.•Ovaries of PCOS mice were structurally and functionally compromised at birth. Polycystic ovary syndrome (PCOS) is a common form of anovulatory infertility with a strong hereditary component but no candidate genes have been found. The inheritance pattern may be due to in utero androgen programming on gene expression and mitochondria. Mitochondria are maternally inherited and alterations to mitochondria after fetal androgen exposure may explain one of the mechanisms of fetal programming in PCOS. Our aim was to investigate the role of excessive prenatal androgens in ovarian development by identifying how hyperandrogenemia affects gene expression and mitochondria in neonatal ovary. Pregnant dams were injected with dihydrotestosterone on days 16–18 of pregnancy. Day 0 ovaries were collected for gene expression and mitochondrial studies. RNAseq showed differential gene expressions which were related to mitochondrial dysfunction, fetal gonadal development, oocyte maturation, metabolism, angiogenesis, and PCOS. Top 20 up and downregulated genes were validated with qPCR and Western Blot. Transcriptional pathways involved in folliculogenesis and genes involved in ovarian and mitochondrial function were dysregulated. Further, DHT exposure altered mitochondrial ultrastructure and function by increasing mitochondrial oxygen consumption and decreasing mitochondrial efficiency with increased proton leak within the first day of life. Our data indicates that one path that leads to PCOS begins at birth and is programmed in utero by androgens.</description><identifier>ISSN: 0960-0760</identifier><identifier>EISSN: 1879-1220</identifier><identifier>DOI: 10.1016/j.jsbmb.2021.105830</identifier><identifier>PMID: 33515680</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Androgens ; Androgens - genetics ; Androgens - metabolism ; Angiogenesis ; Animals ; Dihydrotestosterone ; Female ; Fetal Development - genetics ; Fetuses ; Folliculogenesis ; Gene expression ; Genes ; Humans ; Infertility ; Infertility, Female - genetics ; Infertility, Female - metabolism ; Mitochondria ; Neonates ; Ovaries ; Ovary ; Ovary - growth &amp; development ; Ovary - metabolism ; Oxygen consumption ; PCOS ; Polycystic ovary syndrome ; Polycystic Ovary Syndrome - genetics ; Polycystic Ovary Syndrome - metabolism ; Polycystic Ovary Syndrome - pathology ; Pregnancy ; Prenatal experience ; Sex Differentiation - genetics ; Transcription ; Ultrastructure</subject><ispartof>The Journal of steroid biochemistry and molecular biology, 2021-03, Vol.207, p.105830-105830, Article 105830</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Mar 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-67b2000af1f8696d8a8560718b7cd6ae8b9547d9c489dccd8ec260d44bf56223</citedby><cites>FETCH-LOGICAL-c487t-67b2000af1f8696d8a8560718b7cd6ae8b9547d9c489dccd8ec260d44bf56223</cites><orcidid>0000-0002-2311-5615 ; 0000-0003-0476-4457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960076021000236$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33515680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barsky, Maya</creatorcontrib><creatorcontrib>Merkison, Jamie</creatorcontrib><creatorcontrib>Hosseinzadeh, Pardis</creatorcontrib><creatorcontrib>Yang, Liubin</creatorcontrib><creatorcontrib>Bruno-Gaston, Janet</creatorcontrib><creatorcontrib>Dunn, Jay</creatorcontrib><creatorcontrib>Gibbons, William</creatorcontrib><creatorcontrib>Blesson, Chellakkan Selvanesan</creatorcontrib><title>Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development</title><title>The Journal of steroid biochemistry and molecular biology</title><addtitle>J Steroid Biochem Mol Biol</addtitle><description>•PCOS is developmentally programmed by in utero androgen (dihydrotestosterone) exposure.•PCOS caused dysregulation of genes related to ovarian function and mitochondria in the ovary.•Ovarian mitochondrial ultrastructure was affected in PCOS mice.•PCOS ovaries consumed more oxygen than the controls.•Ovaries of PCOS mice were structurally and functionally compromised at birth. Polycystic ovary syndrome (PCOS) is a common form of anovulatory infertility with a strong hereditary component but no candidate genes have been found. The inheritance pattern may be due to in utero androgen programming on gene expression and mitochondria. Mitochondria are maternally inherited and alterations to mitochondria after fetal androgen exposure may explain one of the mechanisms of fetal programming in PCOS. Our aim was to investigate the role of excessive prenatal androgens in ovarian development by identifying how hyperandrogenemia affects gene expression and mitochondria in neonatal ovary. Pregnant dams were injected with dihydrotestosterone on days 16–18 of pregnancy. Day 0 ovaries were collected for gene expression and mitochondrial studies. RNAseq showed differential gene expressions which were related to mitochondrial dysfunction, fetal gonadal development, oocyte maturation, metabolism, angiogenesis, and PCOS. Top 20 up and downregulated genes were validated with qPCR and Western Blot. Transcriptional pathways involved in folliculogenesis and genes involved in ovarian and mitochondrial function were dysregulated. Further, DHT exposure altered mitochondrial ultrastructure and function by increasing mitochondrial oxygen consumption and decreasing mitochondrial efficiency with increased proton leak within the first day of life. Our data indicates that one path that leads to PCOS begins at birth and is programmed in utero by androgens.</description><subject>Androgens</subject><subject>Androgens - genetics</subject><subject>Androgens - metabolism</subject><subject>Angiogenesis</subject><subject>Animals</subject><subject>Dihydrotestosterone</subject><subject>Female</subject><subject>Fetal Development - genetics</subject><subject>Fetuses</subject><subject>Folliculogenesis</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Humans</subject><subject>Infertility</subject><subject>Infertility, Female - genetics</subject><subject>Infertility, Female - metabolism</subject><subject>Mitochondria</subject><subject>Neonates</subject><subject>Ovaries</subject><subject>Ovary</subject><subject>Ovary - growth &amp; development</subject><subject>Ovary - metabolism</subject><subject>Oxygen consumption</subject><subject>PCOS</subject><subject>Polycystic ovary syndrome</subject><subject>Polycystic Ovary Syndrome - genetics</subject><subject>Polycystic Ovary Syndrome - metabolism</subject><subject>Polycystic Ovary Syndrome - pathology</subject><subject>Pregnancy</subject><subject>Prenatal experience</subject><subject>Sex Differentiation - genetics</subject><subject>Transcription</subject><subject>Ultrastructure</subject><issn>0960-0760</issn><issn>1879-1220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kV-L1TAQxYMo7nX1EwgS8MWXXvOnSVNBQZZdFRZ82feQJtNrSpvUpL14v72pd13UB58Ck9-cmTMHoZeU7Cmh8u2wH3I3dXtGGC0VoTh5hHZUNW1FGSOP0Y60klSkkeQCPct5IIRwTpun6IJzQYVUZIfGG1jMiOcUD8lMkw8HHHs8x_FkT3nxFsejSSecT8GlOME7fN33YJe8UWarHSBg-DHHvCbAMRQlCGaT3Bq9CdjBEcY4TxCW5-hJb8YML-7fS3R3c3139bm6_frpy9XH28rWqlkq2XSs7Gp62ivZSqeMEpI0VHWNddKA6lpRN64tdOusdQosk8TVddcLyRi_RB_OsvPaTeBsmZzMqOfkp-JFR-P13z_Bf9OHeNSKlKMIWQTe3Auk-H2FvOjJZwvjaALENWtWK66oqpUo6Ot_0CGuKRR3mknellCUaAvFz5RNMecE_cMylOgtTD3oX2HqLUx9DrN0vfrTx0PP7_QK8P4MQDnm0UPS2XoIFpxPJSTtov_vgJ-C3rPN</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Barsky, Maya</creator><creator>Merkison, Jamie</creator><creator>Hosseinzadeh, Pardis</creator><creator>Yang, Liubin</creator><creator>Bruno-Gaston, Janet</creator><creator>Dunn, Jay</creator><creator>Gibbons, William</creator><creator>Blesson, Chellakkan Selvanesan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2311-5615</orcidid><orcidid>https://orcid.org/0000-0003-0476-4457</orcidid></search><sort><creationdate>20210301</creationdate><title>Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development</title><author>Barsky, Maya ; Merkison, Jamie ; Hosseinzadeh, Pardis ; Yang, Liubin ; Bruno-Gaston, Janet ; Dunn, Jay ; Gibbons, William ; Blesson, Chellakkan Selvanesan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-67b2000af1f8696d8a8560718b7cd6ae8b9547d9c489dccd8ec260d44bf56223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Androgens</topic><topic>Androgens - genetics</topic><topic>Androgens - metabolism</topic><topic>Angiogenesis</topic><topic>Animals</topic><topic>Dihydrotestosterone</topic><topic>Female</topic><topic>Fetal Development - genetics</topic><topic>Fetuses</topic><topic>Folliculogenesis</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Humans</topic><topic>Infertility</topic><topic>Infertility, Female - genetics</topic><topic>Infertility, Female - metabolism</topic><topic>Mitochondria</topic><topic>Neonates</topic><topic>Ovaries</topic><topic>Ovary</topic><topic>Ovary - growth &amp; development</topic><topic>Ovary - metabolism</topic><topic>Oxygen consumption</topic><topic>PCOS</topic><topic>Polycystic ovary syndrome</topic><topic>Polycystic Ovary Syndrome - genetics</topic><topic>Polycystic Ovary Syndrome - metabolism</topic><topic>Polycystic Ovary Syndrome - pathology</topic><topic>Pregnancy</topic><topic>Prenatal experience</topic><topic>Sex Differentiation - genetics</topic><topic>Transcription</topic><topic>Ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barsky, Maya</creatorcontrib><creatorcontrib>Merkison, Jamie</creatorcontrib><creatorcontrib>Hosseinzadeh, Pardis</creatorcontrib><creatorcontrib>Yang, Liubin</creatorcontrib><creatorcontrib>Bruno-Gaston, Janet</creatorcontrib><creatorcontrib>Dunn, Jay</creatorcontrib><creatorcontrib>Gibbons, William</creatorcontrib><creatorcontrib>Blesson, Chellakkan Selvanesan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of steroid biochemistry and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barsky, Maya</au><au>Merkison, Jamie</au><au>Hosseinzadeh, Pardis</au><au>Yang, Liubin</au><au>Bruno-Gaston, Janet</au><au>Dunn, Jay</au><au>Gibbons, William</au><au>Blesson, Chellakkan Selvanesan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development</atitle><jtitle>The Journal of steroid biochemistry and molecular biology</jtitle><addtitle>J Steroid Biochem Mol Biol</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>207</volume><spage>105830</spage><epage>105830</epage><pages>105830-105830</pages><artnum>105830</artnum><issn>0960-0760</issn><eissn>1879-1220</eissn><abstract>•PCOS is developmentally programmed by in utero androgen (dihydrotestosterone) exposure.•PCOS caused dysregulation of genes related to ovarian function and mitochondria in the ovary.•Ovarian mitochondrial ultrastructure was affected in PCOS mice.•PCOS ovaries consumed more oxygen than the controls.•Ovaries of PCOS mice were structurally and functionally compromised at birth. Polycystic ovary syndrome (PCOS) is a common form of anovulatory infertility with a strong hereditary component but no candidate genes have been found. The inheritance pattern may be due to in utero androgen programming on gene expression and mitochondria. Mitochondria are maternally inherited and alterations to mitochondria after fetal androgen exposure may explain one of the mechanisms of fetal programming in PCOS. Our aim was to investigate the role of excessive prenatal androgens in ovarian development by identifying how hyperandrogenemia affects gene expression and mitochondria in neonatal ovary. Pregnant dams were injected with dihydrotestosterone on days 16–18 of pregnancy. Day 0 ovaries were collected for gene expression and mitochondrial studies. RNAseq showed differential gene expressions which were related to mitochondrial dysfunction, fetal gonadal development, oocyte maturation, metabolism, angiogenesis, and PCOS. Top 20 up and downregulated genes were validated with qPCR and Western Blot. Transcriptional pathways involved in folliculogenesis and genes involved in ovarian and mitochondrial function were dysregulated. Further, DHT exposure altered mitochondrial ultrastructure and function by increasing mitochondrial oxygen consumption and decreasing mitochondrial efficiency with increased proton leak within the first day of life. Our data indicates that one path that leads to PCOS begins at birth and is programmed in utero by androgens.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33515680</pmid><doi>10.1016/j.jsbmb.2021.105830</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2311-5615</orcidid><orcidid>https://orcid.org/0000-0003-0476-4457</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-0760
ispartof The Journal of steroid biochemistry and molecular biology, 2021-03, Vol.207, p.105830-105830, Article 105830
issn 0960-0760
1879-1220
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8056856
source MEDLINE; Elsevier ScienceDirect Journals
subjects Androgens
Androgens - genetics
Androgens - metabolism
Angiogenesis
Animals
Dihydrotestosterone
Female
Fetal Development - genetics
Fetuses
Folliculogenesis
Gene expression
Genes
Humans
Infertility
Infertility, Female - genetics
Infertility, Female - metabolism
Mitochondria
Neonates
Ovaries
Ovary
Ovary - growth & development
Ovary - metabolism
Oxygen consumption
PCOS
Polycystic ovary syndrome
Polycystic Ovary Syndrome - genetics
Polycystic Ovary Syndrome - metabolism
Polycystic Ovary Syndrome - pathology
Pregnancy
Prenatal experience
Sex Differentiation - genetics
Transcription
Ultrastructure
title Fetal programming of polycystic ovary syndrome: Effects of androgen exposure on prenatal ovarian development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A36%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20programming%20of%20polycystic%20ovary%20syndrome:%20Effects%20of%20androgen%20exposure%20on%20prenatal%20ovarian%20development&rft.jtitle=The%20Journal%20of%20steroid%20biochemistry%20and%20molecular%20biology&rft.au=Barsky,%20Maya&rft.date=2021-03-01&rft.volume=207&rft.spage=105830&rft.epage=105830&rft.pages=105830-105830&rft.artnum=105830&rft.issn=0960-0760&rft.eissn=1879-1220&rft_id=info:doi/10.1016/j.jsbmb.2021.105830&rft_dat=%3Cproquest_pubme%3E2639583859%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639583859&rft_id=info:pmid/33515680&rft_els_id=S0960076021000236&rfr_iscdi=true