BABEL enables cross-modality translation between multiomic profiles at single-cell resolution

Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility—for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (15), p.1-11
Hauptverfasser: Wu, Kevin E., Yost, Kathryn E., Chang, Howard Y., Zou, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 15
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Wu, Kevin E.
Yost, Kathryn E.
Chang, Howard Y.
Zou, James
description Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility—for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scRNA-seq]) and chromatin accessibility (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq])—widespread application of joint profiling is challenging due to its experimental complexity, noise, and cost. Here, we introduce BABEL, a deep learning method that translates between the transcriptome and chromatin profiles of a single cell. Leveraging an interoperable neural network model, BABEL can predict single-cell expression directly from a cell’s scATAC-seq and vice versa after training on relevant data. This makes it possible to computationally synthesize paired multiomic measurements when only one modality is experimentally available. Across several paired single-cell ATAC and gene expression datasets in human and mouse, we validate that BABEL accurately translates between these modalities for individual cells. BABEL also generalizes well to cell types within new biological contexts not seen during training. Starting from scATAC-seq of patient-derived basal cell carcinoma (BCC), BABEL generated single-cell expression that enabled fine-grained classification of complex cell states, despite having never seen BCC data. These predictions are comparable to analyses of experimental BCC scRNA-seq data for diverse cell types related to BABEL’s training data. We further show that BABEL can incorporate additional single-cell data modalities, such as protein epitope profiling, thus enabling translation across chromatin, RNA, and protein. BABEL offers a powerful approach for data exploration and hypothesis generation.
doi_str_mv 10.1073/pnas.2023070118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8054007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040070</jstor_id><sourcerecordid>27040070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-97aaecba4f5a57d3e8b9cf64a2bf003342e407fee5b787815e7f783a0329ef83</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EosvCmRMoEhcuacdftXNBaqtSkFbi0iuynOy4eOXYi52A-t_jsO3ycbKs-b3RvPcIeU3hlILiZ_toyykDxkEBpfoJWVHoaHsuOnhKVgBMtVowcUJelLIDgE5qeE5OONdMdUyuyNfLi8vrTYPR9gFLM-RUSjumrQ1-um-mbGMJdvIpNj1OPxFjM86h_kc_NPucnF9UdmqKj3cB2wFDaDKWFOZF9JI8czYUfPXwrsntx-vbq0_t5svN56uLTTsIwae2U9bi0FvhpJVqy1H33eDOhWW9A-BcMBSgHKLslVaaSlROaW6Bsw6d5mvy4bB2P_cjbgeM9fBg9tmPNt-bZL35dxL9N3OXfhgNUkDNcU3ePyzI6fuMZTKjL4sXGzHNxTBJgdVMpazou__QXZpzrO4Wqh4EotaxJmcH6negGd3xGApmac4szZk_zVXF2789HPnHqirw5gDsypTycc4ULBaA_wIbYKBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513290402</pqid></control><display><type>article</type><title>BABEL enables cross-modality translation between multiomic profiles at single-cell resolution</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wu, Kevin E. ; Yost, Kathryn E. ; Chang, Howard Y. ; Zou, James</creator><creatorcontrib>Wu, Kevin E. ; Yost, Kathryn E. ; Chang, Howard Y. ; Zou, James</creatorcontrib><description>Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility—for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scRNA-seq]) and chromatin accessibility (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq])—widespread application of joint profiling is challenging due to its experimental complexity, noise, and cost. Here, we introduce BABEL, a deep learning method that translates between the transcriptome and chromatin profiles of a single cell. Leveraging an interoperable neural network model, BABEL can predict single-cell expression directly from a cell’s scATAC-seq and vice versa after training on relevant data. This makes it possible to computationally synthesize paired multiomic measurements when only one modality is experimentally available. Across several paired single-cell ATAC and gene expression datasets in human and mouse, we validate that BABEL accurately translates between these modalities for individual cells. BABEL also generalizes well to cell types within new biological contexts not seen during training. Starting from scATAC-seq of patient-derived basal cell carcinoma (BCC), BABEL generated single-cell expression that enabled fine-grained classification of complex cell states, despite having never seen BCC data. These predictions are comparable to analyses of experimental BCC scRNA-seq data for diverse cell types related to BABEL’s training data. We further show that BABEL can incorporate additional single-cell data modalities, such as protein epitope profiling, thus enabling translation across chromatin, RNA, and protein. BABEL offers a powerful approach for data exploration and hypothesis generation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2023070118</identifier><identifier>PMID: 33827925</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Accessibility ; Animals ; Basal cell carcinoma ; Biological Sciences ; Carcinoma - genetics ; Carcinoma - metabolism ; Chromatin ; Complexity ; Deep Learning ; Epitopes ; Gene expression ; Gene sequencing ; Genomics - methods ; Humans ; INAUGURAL ARTICLE ; Machine learning ; Mice ; Neural networks ; Proteins ; Proteome - genetics ; Proteome - metabolism ; Ribonucleic acid ; RNA ; Single-Cell Analysis - methods ; Software ; Training ; Transcriptome ; Transcriptomes ; Translation ; Transposase</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (15), p.1-11</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Apr 13, 2021</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-97aaecba4f5a57d3e8b9cf64a2bf003342e407fee5b787815e7f783a0329ef83</citedby><cites>FETCH-LOGICAL-c443t-97aaecba4f5a57d3e8b9cf64a2bf003342e407fee5b787815e7f783a0329ef83</cites><orcidid>0000-0002-4786-9796 ; 0000-0002-9459-4393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040070$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040070$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33827925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Kevin E.</creatorcontrib><creatorcontrib>Yost, Kathryn E.</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Zou, James</creatorcontrib><title>BABEL enables cross-modality translation between multiomic profiles at single-cell resolution</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility—for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scRNA-seq]) and chromatin accessibility (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq])—widespread application of joint profiling is challenging due to its experimental complexity, noise, and cost. Here, we introduce BABEL, a deep learning method that translates between the transcriptome and chromatin profiles of a single cell. Leveraging an interoperable neural network model, BABEL can predict single-cell expression directly from a cell’s scATAC-seq and vice versa after training on relevant data. This makes it possible to computationally synthesize paired multiomic measurements when only one modality is experimentally available. Across several paired single-cell ATAC and gene expression datasets in human and mouse, we validate that BABEL accurately translates between these modalities for individual cells. BABEL also generalizes well to cell types within new biological contexts not seen during training. Starting from scATAC-seq of patient-derived basal cell carcinoma (BCC), BABEL generated single-cell expression that enabled fine-grained classification of complex cell states, despite having never seen BCC data. These predictions are comparable to analyses of experimental BCC scRNA-seq data for diverse cell types related to BABEL’s training data. We further show that BABEL can incorporate additional single-cell data modalities, such as protein epitope profiling, thus enabling translation across chromatin, RNA, and protein. BABEL offers a powerful approach for data exploration and hypothesis generation.</description><subject>Accessibility</subject><subject>Animals</subject><subject>Basal cell carcinoma</subject><subject>Biological Sciences</subject><subject>Carcinoma - genetics</subject><subject>Carcinoma - metabolism</subject><subject>Chromatin</subject><subject>Complexity</subject><subject>Deep Learning</subject><subject>Epitopes</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genomics - methods</subject><subject>Humans</subject><subject>INAUGURAL ARTICLE</subject><subject>Machine learning</subject><subject>Mice</subject><subject>Neural networks</subject><subject>Proteins</subject><subject>Proteome - genetics</subject><subject>Proteome - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Single-Cell Analysis - methods</subject><subject>Software</subject><subject>Training</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Translation</subject><subject>Transposase</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1v1DAQxS0EosvCmRMoEhcuacdftXNBaqtSkFbi0iuynOy4eOXYi52A-t_jsO3ycbKs-b3RvPcIeU3hlILiZ_toyykDxkEBpfoJWVHoaHsuOnhKVgBMtVowcUJelLIDgE5qeE5OONdMdUyuyNfLi8vrTYPR9gFLM-RUSjumrQ1-um-mbGMJdvIpNj1OPxFjM86h_kc_NPucnF9UdmqKj3cB2wFDaDKWFOZF9JI8czYUfPXwrsntx-vbq0_t5svN56uLTTsIwae2U9bi0FvhpJVqy1H33eDOhWW9A-BcMBSgHKLslVaaSlROaW6Bsw6d5mvy4bB2P_cjbgeM9fBg9tmPNt-bZL35dxL9N3OXfhgNUkDNcU3ePyzI6fuMZTKjL4sXGzHNxTBJgdVMpazou__QXZpzrO4Wqh4EotaxJmcH6negGd3xGApmac4szZk_zVXF2789HPnHqirw5gDsypTycc4ULBaA_wIbYKBY</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Wu, Kevin E.</creator><creator>Yost, Kathryn E.</creator><creator>Chang, Howard Y.</creator><creator>Zou, James</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4786-9796</orcidid><orcidid>https://orcid.org/0000-0002-9459-4393</orcidid></search><sort><creationdate>20210413</creationdate><title>BABEL enables cross-modality translation between multiomic profiles at single-cell resolution</title><author>Wu, Kevin E. ; Yost, Kathryn E. ; Chang, Howard Y. ; Zou, James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-97aaecba4f5a57d3e8b9cf64a2bf003342e407fee5b787815e7f783a0329ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Animals</topic><topic>Basal cell carcinoma</topic><topic>Biological Sciences</topic><topic>Carcinoma - genetics</topic><topic>Carcinoma - metabolism</topic><topic>Chromatin</topic><topic>Complexity</topic><topic>Deep Learning</topic><topic>Epitopes</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genomics - methods</topic><topic>Humans</topic><topic>INAUGURAL ARTICLE</topic><topic>Machine learning</topic><topic>Mice</topic><topic>Neural networks</topic><topic>Proteins</topic><topic>Proteome - genetics</topic><topic>Proteome - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Single-Cell Analysis - methods</topic><topic>Software</topic><topic>Training</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Translation</topic><topic>Transposase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Kevin E.</creatorcontrib><creatorcontrib>Yost, Kathryn E.</creatorcontrib><creatorcontrib>Chang, Howard Y.</creatorcontrib><creatorcontrib>Zou, James</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Kevin E.</au><au>Yost, Kathryn E.</au><au>Chang, Howard Y.</au><au>Zou, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BABEL enables cross-modality translation between multiomic profiles at single-cell resolution</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-13</date><risdate>2021</risdate><volume>118</volume><issue>15</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Simultaneous profiling of multiomic modalities within a single cell is a grand challenge for single-cell biology. While there have been impressive technical innovations demonstrating feasibility—for example, generating paired measurements of single-cell transcriptome (single-cell RNA sequencing [scRNA-seq]) and chromatin accessibility (single-cell assay for transposase-accessible chromatin using sequencing [scATAC-seq])—widespread application of joint profiling is challenging due to its experimental complexity, noise, and cost. Here, we introduce BABEL, a deep learning method that translates between the transcriptome and chromatin profiles of a single cell. Leveraging an interoperable neural network model, BABEL can predict single-cell expression directly from a cell’s scATAC-seq and vice versa after training on relevant data. This makes it possible to computationally synthesize paired multiomic measurements when only one modality is experimentally available. Across several paired single-cell ATAC and gene expression datasets in human and mouse, we validate that BABEL accurately translates between these modalities for individual cells. BABEL also generalizes well to cell types within new biological contexts not seen during training. Starting from scATAC-seq of patient-derived basal cell carcinoma (BCC), BABEL generated single-cell expression that enabled fine-grained classification of complex cell states, despite having never seen BCC data. These predictions are comparable to analyses of experimental BCC scRNA-seq data for diverse cell types related to BABEL’s training data. We further show that BABEL can incorporate additional single-cell data modalities, such as protein epitope profiling, thus enabling translation across chromatin, RNA, and protein. BABEL offers a powerful approach for data exploration and hypothesis generation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33827925</pmid><doi>10.1073/pnas.2023070118</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4786-9796</orcidid><orcidid>https://orcid.org/0000-0002-9459-4393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (15), p.1-11
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8054007
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Accessibility
Animals
Basal cell carcinoma
Biological Sciences
Carcinoma - genetics
Carcinoma - metabolism
Chromatin
Complexity
Deep Learning
Epitopes
Gene expression
Gene sequencing
Genomics - methods
Humans
INAUGURAL ARTICLE
Machine learning
Mice
Neural networks
Proteins
Proteome - genetics
Proteome - metabolism
Ribonucleic acid
RNA
Single-Cell Analysis - methods
Software
Training
Transcriptome
Transcriptomes
Translation
Transposase
title BABEL enables cross-modality translation between multiomic profiles at single-cell resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A58%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BABEL%20enables%20cross-modality%20translation%20between%20multiomic%20profiles%20at%20single-cell%20resolution&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wu,%20Kevin%20E.&rft.date=2021-04-13&rft.volume=118&rft.issue=15&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2023070118&rft_dat=%3Cjstor_pubme%3E27040070%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513290402&rft_id=info:pmid/33827925&rft_jstor_id=27040070&rfr_iscdi=true