Time–connectivity superposition and the gel/glass duality of weak colloidal gels

Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-04, Vol.118 (15), p.1-9
Hauptverfasser: Keshavarz, Bavand, Rodrigues, Donatien Gomes, Champenois, Jean-Baptiste, Frith, Matthew G., Ilavsky, Jan, Geri, Michela, Divoux, Thibaut, McKinley, Gareth H., Poulesquen, Arnaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 15
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Keshavarz, Bavand
Rodrigues, Donatien Gomes
Champenois, Jean-Baptiste
Frith, Matthew G.
Ilavsky, Jan
Geri, Michela
Divoux, Thibaut
McKinley, Gareth H.
Poulesquen, Arnaud
description Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time–connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time–connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.
doi_str_mv 10.1073/pnas.2022339118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8054006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27040096</jstor_id><sourcerecordid>27040096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-6ef119202437bedc4d4ba9dff7d6f2273baad1abbdfdf6f6c51964aee05e5ccc3</originalsourceid><addsrcrecordid>eNpd0k2LEzEYB_AgiltXz56UQS96mG1eJ5PLwrKoKxQEWc8hk5c2NZ3USaayN7-D39BPYoapVfeUQ3758_DPA8BzBC8Q5GS571W6wBBjQgRC7QOwQFCguqECPgQLCDGvW4rpGXiS0hZCKFgLH4MzQlrCESML8PnW7-yvHz917Hursz_4fFelcW-HfUw--9hXqjdV3thqbcNyHVRKlRlVmFx01XervlY6hhC9UWEy6Sl45FRI9tnxPAdf3r-7vb6pV58-fLy-WtWaQZrrxjqERJmdEt5Zo6mhnRLGOW4ahzEnnVIGqa4zzrjGNZoh0VBlLWSWaa3JObicc_djtysBts-DCnI_-J0a7mRUXv5_0_uNXMeDbCGjEDYl4NUcEFP2Mmmfrd4ci5CIi5YyUtDbGW3uZd9craS2SkJCMG85OaBi3xwnGuK30aYsdz5pG4LqbRyTxAwhTCnlbaGv79FtHIe-9DUpggVkbFLLWekhpjRYd5oAQTktgJwWQP5dgPLi5b-lnPyfHy_gxQy2KcfhdI85LJ2IhvwGziq4Jw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513290558</pqid></control><display><type>article</type><title>Time–connectivity superposition and the gel/glass duality of weak colloidal gels</title><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Keshavarz, Bavand ; Rodrigues, Donatien Gomes ; Champenois, Jean-Baptiste ; Frith, Matthew G. ; Ilavsky, Jan ; Geri, Michela ; Divoux, Thibaut ; McKinley, Gareth H. ; Poulesquen, Arnaud</creator><creatorcontrib>Keshavarz, Bavand ; Rodrigues, Donatien Gomes ; Champenois, Jean-Baptiste ; Frith, Matthew G. ; Ilavsky, Jan ; Geri, Michela ; Divoux, Thibaut ; McKinley, Gareth H. ; Poulesquen, Arnaud ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time–connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time–connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2022339118</identifier><identifier>PMID: 33837153</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>aluminosilicate ; Aluminosilicates ; Aluminum silicates ; Brownian motion ; Colloiding ; Condensed Matter ; Connectivity ; Constitutive models ; Frequency analysis ; Gelation ; Gels ; gels and glasses ; MATERIALS SCIENCE ; Microstructure ; Nanoparticles ; Physical Sciences ; Physics ; Relaxation time ; relaxation time spectrum ; Silica ; Silicon dioxide ; Soft Condensed Matter ; Spectroscopy ; Spectrum analysis ; Superposition (mathematics) ; time-connectivity superposition ; Viscoelasticity ; weak colloidal gels</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (15), p.1-9</ispartof><rights>Copyright National Academy of Sciences Apr 13, 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-6ef119202437bedc4d4ba9dff7d6f2273baad1abbdfdf6f6c51964aee05e5ccc3</citedby><cites>FETCH-LOGICAL-c504t-6ef119202437bedc4d4ba9dff7d6f2273baad1abbdfdf6f6c51964aee05e5ccc3</cites><orcidid>0000-0002-6393-5378 ; 0000-0002-9169-7434 ; 0000-0002-6777-5084 ; 0000-0003-1982-8900 ; 0000-0001-8323-2779 ; 0000-0003-1725-3912 ; 0000-0002-1988-8500 ; 0000-0002-5587-7892 ; 0000000291697434 ; 0000000183232779 ; 0000000317253912 ; 0000000263935378 ; 0000000319828900 ; 0000000267775084 ; 0000000219888500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27040096$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27040096$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33837153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-03327873$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1798453$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Keshavarz, Bavand</creatorcontrib><creatorcontrib>Rodrigues, Donatien Gomes</creatorcontrib><creatorcontrib>Champenois, Jean-Baptiste</creatorcontrib><creatorcontrib>Frith, Matthew G.</creatorcontrib><creatorcontrib>Ilavsky, Jan</creatorcontrib><creatorcontrib>Geri, Michela</creatorcontrib><creatorcontrib>Divoux, Thibaut</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Poulesquen, Arnaud</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Time–connectivity superposition and the gel/glass duality of weak colloidal gels</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time–connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time–connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.</description><subject>aluminosilicate</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Brownian motion</subject><subject>Colloiding</subject><subject>Condensed Matter</subject><subject>Connectivity</subject><subject>Constitutive models</subject><subject>Frequency analysis</subject><subject>Gelation</subject><subject>Gels</subject><subject>gels and glasses</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure</subject><subject>Nanoparticles</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Relaxation time</subject><subject>relaxation time spectrum</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Soft Condensed Matter</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superposition (mathematics)</subject><subject>time-connectivity superposition</subject><subject>Viscoelasticity</subject><subject>weak colloidal gels</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpd0k2LEzEYB_AgiltXz56UQS96mG1eJ5PLwrKoKxQEWc8hk5c2NZ3USaayN7-D39BPYoapVfeUQ3758_DPA8BzBC8Q5GS571W6wBBjQgRC7QOwQFCguqECPgQLCDGvW4rpGXiS0hZCKFgLH4MzQlrCESML8PnW7-yvHz917Hursz_4fFelcW-HfUw--9hXqjdV3thqbcNyHVRKlRlVmFx01XervlY6hhC9UWEy6Sl45FRI9tnxPAdf3r-7vb6pV58-fLy-WtWaQZrrxjqERJmdEt5Zo6mhnRLGOW4ahzEnnVIGqa4zzrjGNZoh0VBlLWSWaa3JObicc_djtysBts-DCnI_-J0a7mRUXv5_0_uNXMeDbCGjEDYl4NUcEFP2Mmmfrd4ci5CIi5YyUtDbGW3uZd9craS2SkJCMG85OaBi3xwnGuK30aYsdz5pG4LqbRyTxAwhTCnlbaGv79FtHIe-9DUpggVkbFLLWekhpjRYd5oAQTktgJwWQP5dgPLi5b-lnPyfHy_gxQy2KcfhdI85LJ2IhvwGziq4Jw</recordid><startdate>20210413</startdate><enddate>20210413</enddate><creator>Keshavarz, Bavand</creator><creator>Rodrigues, Donatien Gomes</creator><creator>Champenois, Jean-Baptiste</creator><creator>Frith, Matthew G.</creator><creator>Ilavsky, Jan</creator><creator>Geri, Michela</creator><creator>Divoux, Thibaut</creator><creator>McKinley, Gareth H.</creator><creator>Poulesquen, Arnaud</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6393-5378</orcidid><orcidid>https://orcid.org/0000-0002-9169-7434</orcidid><orcidid>https://orcid.org/0000-0002-6777-5084</orcidid><orcidid>https://orcid.org/0000-0003-1982-8900</orcidid><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0003-1725-3912</orcidid><orcidid>https://orcid.org/0000-0002-1988-8500</orcidid><orcidid>https://orcid.org/0000-0002-5587-7892</orcidid><orcidid>https://orcid.org/0000000291697434</orcidid><orcidid>https://orcid.org/0000000183232779</orcidid><orcidid>https://orcid.org/0000000317253912</orcidid><orcidid>https://orcid.org/0000000263935378</orcidid><orcidid>https://orcid.org/0000000319828900</orcidid><orcidid>https://orcid.org/0000000267775084</orcidid><orcidid>https://orcid.org/0000000219888500</orcidid></search><sort><creationdate>20210413</creationdate><title>Time–connectivity superposition and the gel/glass duality of weak colloidal gels</title><author>Keshavarz, Bavand ; Rodrigues, Donatien Gomes ; Champenois, Jean-Baptiste ; Frith, Matthew G. ; Ilavsky, Jan ; Geri, Michela ; Divoux, Thibaut ; McKinley, Gareth H. ; Poulesquen, Arnaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-6ef119202437bedc4d4ba9dff7d6f2273baad1abbdfdf6f6c51964aee05e5ccc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>aluminosilicate</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Brownian motion</topic><topic>Colloiding</topic><topic>Condensed Matter</topic><topic>Connectivity</topic><topic>Constitutive models</topic><topic>Frequency analysis</topic><topic>Gelation</topic><topic>Gels</topic><topic>gels and glasses</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure</topic><topic>Nanoparticles</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Relaxation time</topic><topic>relaxation time spectrum</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Soft Condensed Matter</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superposition (mathematics)</topic><topic>time-connectivity superposition</topic><topic>Viscoelasticity</topic><topic>weak colloidal gels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keshavarz, Bavand</creatorcontrib><creatorcontrib>Rodrigues, Donatien Gomes</creatorcontrib><creatorcontrib>Champenois, Jean-Baptiste</creatorcontrib><creatorcontrib>Frith, Matthew G.</creatorcontrib><creatorcontrib>Ilavsky, Jan</creatorcontrib><creatorcontrib>Geri, Michela</creatorcontrib><creatorcontrib>Divoux, Thibaut</creatorcontrib><creatorcontrib>McKinley, Gareth H.</creatorcontrib><creatorcontrib>Poulesquen, Arnaud</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keshavarz, Bavand</au><au>Rodrigues, Donatien Gomes</au><au>Champenois, Jean-Baptiste</au><au>Frith, Matthew G.</au><au>Ilavsky, Jan</au><au>Geri, Michela</au><au>Divoux, Thibaut</au><au>McKinley, Gareth H.</au><au>Poulesquen, Arnaud</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time–connectivity superposition and the gel/glass duality of weak colloidal gels</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-04-13</date><risdate>2021</risdate><volume>118</volume><issue>15</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Colloidal gels result from the aggregation of Brownian particles suspended in a solvent. Gelation is induced by attractive interactions between individual particles that drive the formation of clusters, which in turn aggregate to form a space-spanning structure. We study this process in aluminosilicate colloidal gels through time-resolved structural and mechanical spectroscopy. Using the time–connectivity superposition principle a series of rapidly acquired linear viscoelastic spectra, measured throughout the gelation process by applying an exponential chirp protocol, are rescaled onto a universal master curve that spans over eight orders of magnitude in reduced frequency. This analysis reveals that the underlying relaxation time spectrum of the colloidal gel is symmetric in time with power-law tails characterized by a single exponent that is set at the gel point. The microstructural mechanical network has a dual character; at short length scales and fast times it appears glassy, whereas at longer times and larger scales it is gel-like. These results can be captured by a simple three-parameter constitutive model and demonstrate that the microstructure of a mature colloidal gel bears the residual skeleton of the original sample-spanning network that is created at the gel point. Our conclusions are confirmed by applying the same technique to another well-known colloidal gel system composed of attractive silica nanoparticles. The results illustrate the power of the time–connectivity superposition principle for this class of soft glassy materials and provide a compact description for the dichotomous viscoelastic nature of weak colloidal gels.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33837153</pmid><doi>10.1073/pnas.2022339118</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6393-5378</orcidid><orcidid>https://orcid.org/0000-0002-9169-7434</orcidid><orcidid>https://orcid.org/0000-0002-6777-5084</orcidid><orcidid>https://orcid.org/0000-0003-1982-8900</orcidid><orcidid>https://orcid.org/0000-0001-8323-2779</orcidid><orcidid>https://orcid.org/0000-0003-1725-3912</orcidid><orcidid>https://orcid.org/0000-0002-1988-8500</orcidid><orcidid>https://orcid.org/0000-0002-5587-7892</orcidid><orcidid>https://orcid.org/0000000291697434</orcidid><orcidid>https://orcid.org/0000000183232779</orcidid><orcidid>https://orcid.org/0000000317253912</orcidid><orcidid>https://orcid.org/0000000263935378</orcidid><orcidid>https://orcid.org/0000000319828900</orcidid><orcidid>https://orcid.org/0000000267775084</orcidid><orcidid>https://orcid.org/0000000219888500</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-04, Vol.118 (15), p.1-9
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8054006
source Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects aluminosilicate
Aluminosilicates
Aluminum silicates
Brownian motion
Colloiding
Condensed Matter
Connectivity
Constitutive models
Frequency analysis
Gelation
Gels
gels and glasses
MATERIALS SCIENCE
Microstructure
Nanoparticles
Physical Sciences
Physics
Relaxation time
relaxation time spectrum
Silica
Silicon dioxide
Soft Condensed Matter
Spectroscopy
Spectrum analysis
Superposition (mathematics)
time-connectivity superposition
Viscoelasticity
weak colloidal gels
title Time–connectivity superposition and the gel/glass duality of weak colloidal gels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A53%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%93connectivity%20superposition%20and%20the%20gel/glass%20duality%20of%20weak%20colloidal%20gels&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Keshavarz,%20Bavand&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-04-13&rft.volume=118&rft.issue=15&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2022339118&rft_dat=%3Cjstor_pubme%3E27040096%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513290558&rft_id=info:pmid/33837153&rft_jstor_id=27040096&rfr_iscdi=true