Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens

βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2021-04, Vol.22 (8), p.1329-1346
Hauptverfasser: Rocha, Megan A., Sprague‐Piercy, Marc A., Kwok, Ashley O., Roskamp, Kyle W., Martin, Rachel W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1346
container_issue 8
container_start_page 1329
container_title Chembiochem : a European journal of chemical biology
container_volume 22
creator Rocha, Megan A.
Sprague‐Piercy, Marc A.
Kwok, Ashley O.
Roskamp, Kyle W.
Martin, Rachel W.
description βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. Clear as crystallin? βγ‐crystallins serve as structural and refractive proteins in the vertebrate lens. Mutations in these proteins are associated with cataracts. Herein, we review recent developments toward understanding the biophysical properties and chemical reactivity of monomeric and oligomeric βγ crystallins, including a discussion of the common techniques used to study crystallin structure and stability.
doi_str_mv 10.1002/cbic.202000739
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8052307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488557413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3839-43dd165be8983d034581940b0d87a485ba5953684f3274f24ad24240d50c88743</originalsourceid><addsrcrecordid>eNqFkc-O0zAQhy0EYpfClSOyxIVLi-2xY-eCBNkFVqoE0sINyXISh3rl2MVOQLntI_As8B77EDwJqVrKnwsn25rPn2bmh9BDSlaUEPa0qV2zYoQRQiSUt9Ap5VAuZQFw-3DnjMkTdC_nq5kpC6B30QmAKEpVyFP0odrY3jXG47cpbm0anM34zA429S5YfBn9WDvvhgmb0OLLwRxeLuCbbzfff1x_rdKUB-O9CxnHDg8bi88ni9c25PvoTmd8tg8O5wK9f3n-rnq9XL95dVE9Xy8bULsOoW1pIWqrSgUtAS4ULTmpSauk4UrURpQCCsU7YJJ3jJuWccZJK0ijlOSwQM_23u1Y97ZtbBiS8XqbXG_SpKNx-u9KcBv9MX7WiggG8-IW6MlBkOKn0eZB9y431nsTbByzZlwpISSnMKOP_0Gv4pjCPJ5mggIDSWAnXO2pJsWck-2OzVCid8HpXXD6GNz84dGfIxzxX0nNQLkHvjhvp__odPXiovot_wmkd6Zm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513237037</pqid></control><display><type>article</type><title>Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Rocha, Megan A. ; Sprague‐Piercy, Marc A. ; Kwok, Ashley O. ; Roskamp, Kyle W. ; Martin, Rachel W.</creator><creatorcontrib>Rocha, Megan A. ; Sprague‐Piercy, Marc A. ; Kwok, Ashley O. ; Roskamp, Kyle W. ; Martin, Rachel W.</creatorcontrib><description>βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. Clear as crystallin? βγ‐crystallins serve as structural and refractive proteins in the vertebrate lens. Mutations in these proteins are associated with cataracts. Herein, we review recent developments toward understanding the biophysical properties and chemical reactivity of monomeric and oligomeric βγ crystallins, including a discussion of the common techniques used to study crystallin structure and stability.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202000739</identifier><identifier>PMID: 33569867</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>beta-gamma-crystallin ; Binding ; Cataracts ; Chemical properties ; Circular dichroism ; Crystal structure ; Crystallin ; Crystallinity ; Crystallins - chemistry ; Dichroism ; Eye lens ; Fluorescence ; Fluorescence resonance energy transfer ; Humans ; Lens, Crystalline - chemistry ; Lenses ; Light scattering ; Liquid phases ; long-lived proteins ; Metal ions ; Models, Molecular ; Mutation ; Opacity ; Oxidation ; Phase separation ; protein aggregation ; protein solubility ; Proteins ; Solubility ; Stability ; Transition metals ; Translation ; Tryptophan ; Vertebrates</subject><ispartof>Chembiochem : a European journal of chemical biology, 2021-04, Vol.22 (8), p.1329-1346</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3839-43dd165be8983d034581940b0d87a485ba5953684f3274f24ad24240d50c88743</citedby><cites>FETCH-LOGICAL-c3839-43dd165be8983d034581940b0d87a485ba5953684f3274f24ad24240d50c88743</cites><orcidid>0000-0001-9996-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202000739$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202000739$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33569867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocha, Megan A.</creatorcontrib><creatorcontrib>Sprague‐Piercy, Marc A.</creatorcontrib><creatorcontrib>Kwok, Ashley O.</creatorcontrib><creatorcontrib>Roskamp, Kyle W.</creatorcontrib><creatorcontrib>Martin, Rachel W.</creatorcontrib><title>Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. Clear as crystallin? βγ‐crystallins serve as structural and refractive proteins in the vertebrate lens. Mutations in these proteins are associated with cataracts. Herein, we review recent developments toward understanding the biophysical properties and chemical reactivity of monomeric and oligomeric βγ crystallins, including a discussion of the common techniques used to study crystallin structure and stability.</description><subject>beta-gamma-crystallin</subject><subject>Binding</subject><subject>Cataracts</subject><subject>Chemical properties</subject><subject>Circular dichroism</subject><subject>Crystal structure</subject><subject>Crystallin</subject><subject>Crystallinity</subject><subject>Crystallins - chemistry</subject><subject>Dichroism</subject><subject>Eye lens</subject><subject>Fluorescence</subject><subject>Fluorescence resonance energy transfer</subject><subject>Humans</subject><subject>Lens, Crystalline - chemistry</subject><subject>Lenses</subject><subject>Light scattering</subject><subject>Liquid phases</subject><subject>long-lived proteins</subject><subject>Metal ions</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Opacity</subject><subject>Oxidation</subject><subject>Phase separation</subject><subject>protein aggregation</subject><subject>protein solubility</subject><subject>Proteins</subject><subject>Solubility</subject><subject>Stability</subject><subject>Transition metals</subject><subject>Translation</subject><subject>Tryptophan</subject><subject>Vertebrates</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-O0zAQhy0EYpfClSOyxIVLi-2xY-eCBNkFVqoE0sINyXISh3rl2MVOQLntI_As8B77EDwJqVrKnwsn25rPn2bmh9BDSlaUEPa0qV2zYoQRQiSUt9Ap5VAuZQFw-3DnjMkTdC_nq5kpC6B30QmAKEpVyFP0odrY3jXG47cpbm0anM34zA429S5YfBn9WDvvhgmb0OLLwRxeLuCbbzfff1x_rdKUB-O9CxnHDg8bi88ni9c25PvoTmd8tg8O5wK9f3n-rnq9XL95dVE9Xy8bULsOoW1pIWqrSgUtAS4ULTmpSauk4UrURpQCCsU7YJJ3jJuWccZJK0ijlOSwQM_23u1Y97ZtbBiS8XqbXG_SpKNx-u9KcBv9MX7WiggG8-IW6MlBkOKn0eZB9y431nsTbByzZlwpISSnMKOP_0Gv4pjCPJ5mggIDSWAnXO2pJsWck-2OzVCid8HpXXD6GNz84dGfIxzxX0nNQLkHvjhvp__odPXiovot_wmkd6Zm</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Rocha, Megan A.</creator><creator>Sprague‐Piercy, Marc A.</creator><creator>Kwok, Ashley O.</creator><creator>Roskamp, Kyle W.</creator><creator>Martin, Rachel W.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9996-7411</orcidid></search><sort><creationdate>20210416</creationdate><title>Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens</title><author>Rocha, Megan A. ; Sprague‐Piercy, Marc A. ; Kwok, Ashley O. ; Roskamp, Kyle W. ; Martin, Rachel W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3839-43dd165be8983d034581940b0d87a485ba5953684f3274f24ad24240d50c88743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>beta-gamma-crystallin</topic><topic>Binding</topic><topic>Cataracts</topic><topic>Chemical properties</topic><topic>Circular dichroism</topic><topic>Crystal structure</topic><topic>Crystallin</topic><topic>Crystallinity</topic><topic>Crystallins - chemistry</topic><topic>Dichroism</topic><topic>Eye lens</topic><topic>Fluorescence</topic><topic>Fluorescence resonance energy transfer</topic><topic>Humans</topic><topic>Lens, Crystalline - chemistry</topic><topic>Lenses</topic><topic>Light scattering</topic><topic>Liquid phases</topic><topic>long-lived proteins</topic><topic>Metal ions</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Opacity</topic><topic>Oxidation</topic><topic>Phase separation</topic><topic>protein aggregation</topic><topic>protein solubility</topic><topic>Proteins</topic><topic>Solubility</topic><topic>Stability</topic><topic>Transition metals</topic><topic>Translation</topic><topic>Tryptophan</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Megan A.</creatorcontrib><creatorcontrib>Sprague‐Piercy, Marc A.</creatorcontrib><creatorcontrib>Kwok, Ashley O.</creatorcontrib><creatorcontrib>Roskamp, Kyle W.</creatorcontrib><creatorcontrib>Martin, Rachel W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Megan A.</au><au>Sprague‐Piercy, Marc A.</au><au>Kwok, Ashley O.</au><au>Roskamp, Kyle W.</au><au>Martin, Rachel W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>22</volume><issue>8</issue><spage>1329</spage><epage>1346</epage><pages>1329-1346</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>βγ‐Crystallins are the primary structural and refractive proteins found in the vertebrate eye lens. Because crystallins are not replaced after early eye development, their solubility and stability must be maintained for a lifetime, which is even more remarkable given the high protein concentration in the lens. Aggregation of crystallins caused by mutations or post‐translational modifications can reduce crystallin protein stability and alter intermolecular interactions. Common post‐translational modifications that can cause age‐related cataracts include deamidation, oxidation, and tryptophan derivatization. Metal ion binding can also trigger reduced crystallin solubility through a variety of mechanisms. Interprotein interactions are critical to maintaining lens transparency: crystallins can undergo domain swapping, disulfide bonding, and liquid‐liquid phase separation, all of which can cause opacity depending on the context. Important experimental techniques for assessing crystallin conformation in the absence of a high‐resolution structure include dye‐binding assays, circular dichroism, fluorescence, light scattering, and transition metal FRET. Clear as crystallin? βγ‐crystallins serve as structural and refractive proteins in the vertebrate lens. Mutations in these proteins are associated with cataracts. Herein, we review recent developments toward understanding the biophysical properties and chemical reactivity of monomeric and oligomeric βγ crystallins, including a discussion of the common techniques used to study crystallin structure and stability.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33569867</pmid><doi>10.1002/cbic.202000739</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9996-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2021-04, Vol.22 (8), p.1329-1346
issn 1439-4227
1439-7633
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8052307
source MEDLINE; Access via Wiley Online Library
subjects beta-gamma-crystallin
Binding
Cataracts
Chemical properties
Circular dichroism
Crystal structure
Crystallin
Crystallinity
Crystallins - chemistry
Dichroism
Eye lens
Fluorescence
Fluorescence resonance energy transfer
Humans
Lens, Crystalline - chemistry
Lenses
Light scattering
Liquid phases
long-lived proteins
Metal ions
Models, Molecular
Mutation
Opacity
Oxidation
Phase separation
protein aggregation
protein solubility
Proteins
Solubility
Stability
Transition metals
Translation
Tryptophan
Vertebrates
title Chemical Properties Determine Solubility and Stability in βγ‐Crystallins of the Eye Lens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Properties%20Determine%20Solubility%20and%20Stability%20in%20%CE%B2%CE%B3%E2%80%90Crystallins%20of%20the%20Eye%20Lens&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Rocha,%20Megan%20A.&rft.date=2021-04-16&rft.volume=22&rft.issue=8&rft.spage=1329&rft.epage=1346&rft.pages=1329-1346&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202000739&rft_dat=%3Cproquest_pubme%3E2488557413%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513237037&rft_id=info:pmid/33569867&rfr_iscdi=true