Redox-active antibiotics enhance phosphorus bioavailability
Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nut...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2021-03, Vol.371 (6533), p.1033-1037 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1037 |
---|---|
container_issue | 6533 |
container_start_page | 1033 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 371 |
creator | McRose, Darcy L Newman, Dianne K |
description | Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling. |
doi_str_mv | 10.1126/science.abd1515 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497245918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaLYWj17kwXP22aS7BeCIMUvKAii55BkZ23KdlM3u8X-eyNdix6GYXhv3rx5hFwCnQKwdOaNxcbgVOkSEkiOyBhokcQFo_yYjCnlaZzTLBmRM-9XlAas4KdkxHmaCVHQMbl5xdJ9xcp0douRajqrreus8RE2SxWko83S-VBt76MAqa2ytdK2tt3unJxUqvZ4MfQJeX-4f5s_xYuXx-f53SI2gkEXg65KDQLDAFgZrHImWGnAlKAZNxRRp5gKrkWuhDEpY1zlmdas4ib8qPmE3O51N71eY2mw6VpVy01r16rdSaes_I80dik_3FbmNAEQEASuB4HWffboO7lyfdsEz5KJImMiKSAPrNmeZVrnfYvV4QJQ-ZO2HNKWQ9ph4-qvsQP_N17-DWuAf-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497245918</pqid></control><display><type>article</type><title>Redox-active antibiotics enhance phosphorus bioavailability</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>McRose, Darcy L ; Newman, Dianne K</creator><creatorcontrib>McRose, Darcy L ; Newman, Dianne K</creatorcontrib><description>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abd1515</identifier><identifier>PMID: 33674490</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Anti-Bacterial Agents - biosynthesis ; Antibiotics ; Bacteria ; Batch Cell Culture Techniques ; Bioavailability ; Biological Availability ; Chemical reactions ; Cycles ; Dissolution ; Iron oxides ; Microorganisms ; Minerals ; Nutrient availability ; Oxidation-Reduction ; Phenazine ; Phenazines - metabolism ; Phosphorus ; Phosphorus - metabolism ; Pseudomonas - genetics ; Pseudomonas - growth & development ; Pseudomonas - metabolism ; Redox properties ; Redox reactions</subject><ispartof>Science (American Association for the Advancement of Science), 2021-03, Vol.371 (6533), p.1033-1037</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</citedby><cites>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</cites><orcidid>0000-0003-1647-1918 ; 0000-0001-9637-7176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33674490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McRose, Darcy L</creatorcontrib><creatorcontrib>Newman, Dianne K</creatorcontrib><title>Redox-active antibiotics enhance phosphorus bioavailability</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</description><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Chemical reactions</subject><subject>Cycles</subject><subject>Dissolution</subject><subject>Iron oxides</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Nutrient availability</subject><subject>Oxidation-Reduction</subject><subject>Phenazine</subject><subject>Phenazines - metabolism</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - growth & development</subject><subject>Pseudomonas - metabolism</subject><subject>Redox properties</subject><subject>Redox reactions</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUE1LAzEQDaLYWj17kwXP22aS7BeCIMUvKAii55BkZ23KdlM3u8X-eyNdix6GYXhv3rx5hFwCnQKwdOaNxcbgVOkSEkiOyBhokcQFo_yYjCnlaZzTLBmRM-9XlAas4KdkxHmaCVHQMbl5xdJ9xcp0douRajqrreus8RE2SxWko83S-VBt76MAqa2ytdK2tt3unJxUqvZ4MfQJeX-4f5s_xYuXx-f53SI2gkEXg65KDQLDAFgZrHImWGnAlKAZNxRRp5gKrkWuhDEpY1zlmdas4ib8qPmE3O51N71eY2mw6VpVy01r16rdSaes_I80dik_3FbmNAEQEASuB4HWffboO7lyfdsEz5KJImMiKSAPrNmeZVrnfYvV4QJQ-ZO2HNKWQ9ph4-qvsQP_N17-DWuAf-g</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>McRose, Darcy L</creator><creator>Newman, Dianne K</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1647-1918</orcidid><orcidid>https://orcid.org/0000-0001-9637-7176</orcidid></search><sort><creationdate>20210305</creationdate><title>Redox-active antibiotics enhance phosphorus bioavailability</title><author>McRose, Darcy L ; Newman, Dianne K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Chemical reactions</topic><topic>Cycles</topic><topic>Dissolution</topic><topic>Iron oxides</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Nutrient availability</topic><topic>Oxidation-Reduction</topic><topic>Phenazine</topic><topic>Phenazines - metabolism</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - growth & development</topic><topic>Pseudomonas - metabolism</topic><topic>Redox properties</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McRose, Darcy L</creatorcontrib><creatorcontrib>Newman, Dianne K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McRose, Darcy L</au><au>Newman, Dianne K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-active antibiotics enhance phosphorus bioavailability</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>371</volume><issue>6533</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33674490</pmid><doi>10.1126/science.abd1515</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1647-1918</orcidid><orcidid>https://orcid.org/0000-0001-9637-7176</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2021-03, Vol.371 (6533), p.1033-1037 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051141 |
source | MEDLINE; American Association for the Advancement of Science |
subjects | Anti-Bacterial Agents - biosynthesis Antibiotics Bacteria Batch Cell Culture Techniques Bioavailability Biological Availability Chemical reactions Cycles Dissolution Iron oxides Microorganisms Minerals Nutrient availability Oxidation-Reduction Phenazine Phenazines - metabolism Phosphorus Phosphorus - metabolism Pseudomonas - genetics Pseudomonas - growth & development Pseudomonas - metabolism Redox properties Redox reactions |
title | Redox-active antibiotics enhance phosphorus bioavailability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-active%20antibiotics%20enhance%20phosphorus%20bioavailability&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=McRose,%20Darcy%20L&rft.date=2021-03-05&rft.volume=371&rft.issue=6533&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abd1515&rft_dat=%3Cproquest_pubme%3E2497245918%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497245918&rft_id=info:pmid/33674490&rfr_iscdi=true |