Redox-active antibiotics enhance phosphorus bioavailability

Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-03, Vol.371 (6533), p.1033-1037
Hauptverfasser: McRose, Darcy L, Newman, Dianne K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 6533
container_start_page 1033
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator McRose, Darcy L
Newman, Dianne K
description Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.
doi_str_mv 10.1126/science.abd1515
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2497245918</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</originalsourceid><addsrcrecordid>eNpVUE1LAzEQDaLYWj17kwXP22aS7BeCIMUvKAii55BkZ23KdlM3u8X-eyNdix6GYXhv3rx5hFwCnQKwdOaNxcbgVOkSEkiOyBhokcQFo_yYjCnlaZzTLBmRM-9XlAas4KdkxHmaCVHQMbl5xdJ9xcp0douRajqrreus8RE2SxWko83S-VBt76MAqa2ytdK2tt3unJxUqvZ4MfQJeX-4f5s_xYuXx-f53SI2gkEXg65KDQLDAFgZrHImWGnAlKAZNxRRp5gKrkWuhDEpY1zlmdas4ib8qPmE3O51N71eY2mw6VpVy01r16rdSaes_I80dik_3FbmNAEQEASuB4HWffboO7lyfdsEz5KJImMiKSAPrNmeZVrnfYvV4QJQ-ZO2HNKWQ9ph4-qvsQP_N17-DWuAf-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497245918</pqid></control><display><type>article</type><title>Redox-active antibiotics enhance phosphorus bioavailability</title><source>MEDLINE</source><source>American Association for the Advancement of Science</source><creator>McRose, Darcy L ; Newman, Dianne K</creator><creatorcontrib>McRose, Darcy L ; Newman, Dianne K</creatorcontrib><description>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.abd1515</identifier><identifier>PMID: 33674490</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Anti-Bacterial Agents - biosynthesis ; Antibiotics ; Bacteria ; Batch Cell Culture Techniques ; Bioavailability ; Biological Availability ; Chemical reactions ; Cycles ; Dissolution ; Iron oxides ; Microorganisms ; Minerals ; Nutrient availability ; Oxidation-Reduction ; Phenazine ; Phenazines - metabolism ; Phosphorus ; Phosphorus - metabolism ; Pseudomonas - genetics ; Pseudomonas - growth &amp; development ; Pseudomonas - metabolism ; Redox properties ; Redox reactions</subject><ispartof>Science (American Association for the Advancement of Science), 2021-03, Vol.371 (6533), p.1033-1037</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</citedby><cites>FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</cites><orcidid>0000-0003-1647-1918 ; 0000-0001-9637-7176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33674490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McRose, Darcy L</creatorcontrib><creatorcontrib>Newman, Dianne K</creatorcontrib><title>Redox-active antibiotics enhance phosphorus bioavailability</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</description><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioavailability</subject><subject>Biological Availability</subject><subject>Chemical reactions</subject><subject>Cycles</subject><subject>Dissolution</subject><subject>Iron oxides</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Nutrient availability</subject><subject>Oxidation-Reduction</subject><subject>Phenazine</subject><subject>Phenazines - metabolism</subject><subject>Phosphorus</subject><subject>Phosphorus - metabolism</subject><subject>Pseudomonas - genetics</subject><subject>Pseudomonas - growth &amp; development</subject><subject>Pseudomonas - metabolism</subject><subject>Redox properties</subject><subject>Redox reactions</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVUE1LAzEQDaLYWj17kwXP22aS7BeCIMUvKAii55BkZ23KdlM3u8X-eyNdix6GYXhv3rx5hFwCnQKwdOaNxcbgVOkSEkiOyBhokcQFo_yYjCnlaZzTLBmRM-9XlAas4KdkxHmaCVHQMbl5xdJ9xcp0douRajqrreus8RE2SxWko83S-VBt76MAqa2ytdK2tt3unJxUqvZ4MfQJeX-4f5s_xYuXx-f53SI2gkEXg65KDQLDAFgZrHImWGnAlKAZNxRRp5gKrkWuhDEpY1zlmdas4ib8qPmE3O51N71eY2mw6VpVy01r16rdSaes_I80dik_3FbmNAEQEASuB4HWffboO7lyfdsEz5KJImMiKSAPrNmeZVrnfYvV4QJQ-ZO2HNKWQ9ph4-qvsQP_N17-DWuAf-g</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>McRose, Darcy L</creator><creator>Newman, Dianne K</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1647-1918</orcidid><orcidid>https://orcid.org/0000-0001-9637-7176</orcidid></search><sort><creationdate>20210305</creationdate><title>Redox-active antibiotics enhance phosphorus bioavailability</title><author>McRose, Darcy L ; Newman, Dianne K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-1bfdb14e4211efcef8242dc1cd1b23c0eeb6e643b48a4cc6223a87bb2f3c126b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioavailability</topic><topic>Biological Availability</topic><topic>Chemical reactions</topic><topic>Cycles</topic><topic>Dissolution</topic><topic>Iron oxides</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Nutrient availability</topic><topic>Oxidation-Reduction</topic><topic>Phenazine</topic><topic>Phenazines - metabolism</topic><topic>Phosphorus</topic><topic>Phosphorus - metabolism</topic><topic>Pseudomonas - genetics</topic><topic>Pseudomonas - growth &amp; development</topic><topic>Pseudomonas - metabolism</topic><topic>Redox properties</topic><topic>Redox reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McRose, Darcy L</creatorcontrib><creatorcontrib>Newman, Dianne K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McRose, Darcy L</au><au>Newman, Dianne K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox-active antibiotics enhance phosphorus bioavailability</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>371</volume><issue>6533</issue><spage>1033</spage><epage>1037</epage><pages>1033-1037</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33674490</pmid><doi>10.1126/science.abd1515</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1647-1918</orcidid><orcidid>https://orcid.org/0000-0001-9637-7176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-03, Vol.371 (6533), p.1033-1037
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8051141
source MEDLINE; American Association for the Advancement of Science
subjects Anti-Bacterial Agents - biosynthesis
Antibiotics
Bacteria
Batch Cell Culture Techniques
Bioavailability
Biological Availability
Chemical reactions
Cycles
Dissolution
Iron oxides
Microorganisms
Minerals
Nutrient availability
Oxidation-Reduction
Phenazine
Phenazines - metabolism
Phosphorus
Phosphorus - metabolism
Pseudomonas - genetics
Pseudomonas - growth & development
Pseudomonas - metabolism
Redox properties
Redox reactions
title Redox-active antibiotics enhance phosphorus bioavailability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox-active%20antibiotics%20enhance%20phosphorus%20bioavailability&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=McRose,%20Darcy%20L&rft.date=2021-03-05&rft.volume=371&rft.issue=6533&rft.spage=1033&rft.epage=1037&rft.pages=1033-1037&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.abd1515&rft_dat=%3Cproquest_pubme%3E2497245918%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497245918&rft_id=info:pmid/33674490&rfr_iscdi=true