Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation
In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defin...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-04, Vol.13 (4), p.335-342 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 342 |
---|---|
container_issue | 4 |
container_start_page | 335 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Yang, Yang Wu, Zhenyong Wang, Laurie Zhou, Kaifeng Xia, Kai Xiong, Qiancheng Liu, Longfei Zhang, Zhao Chapman, Edwin R. Xiong, Yong Melia, Thomas J. Karatekin, Erdem Gu, Hongzhou Lin, Chenxiang |
description | In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA ‘nanobricks’ to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30–130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Small liposomes of uniform sizes are valuable tools for studying membrane biology and developing drug-delivery vehicles. Now, a DNA-assisted sorting technique has been shown to produce multiple species of monodispersed liposomes with mean diameters below 150 nm in a scalable manner. This approach has enabled the high-resolution analyses of curvature-dependent membrane protein activities. |
doi_str_mv | 10.1038/s41557-021-00667-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8049973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507670887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-e241f4464670219cf9b3803156066728f45605dac2871a174cf505d2deed571a3</originalsourceid><addsrcrecordid>eNp9kUtP3TAQhS3UCijtH2CBInXTjVs_Y2dTCUFfEioL6NpyHOdiSOKLJ0Giv74Dl962LLryeM7n4zkaQg45e8-ZtB9Aca0NZYJTxuraUL1D9rnRmiqpmhfbWrI98grgGiEteb1L9qQ0VttG7JOLi1zmNK0qWFrKNaPTWA1pnSGPEarcV10C1MNcQfqJnfa-Ov1-TNuSwg31AKjGrgpxmkvql5WfU55ek5e9HyC-eToPyI_Pny5PvtKz8y_fTo7PaNDGzDQKxXulalUbjNCEvmmlZZLr-iGMsL3CSnc-CGu450aFXuNddDF2GjvygHzc-K6Xdozd4xB-cOuSRl_uXfbJ_atM6cqt8p2zTDWNkWjw7smg5NslwuzGBCEOg59iXsAJzQwOZ61B9O0z9DovZcJ4SHEhEVEMKbGhQskAJfbbYThzDztzm505DOwed-Y0Pjr6O8b2ye8lISA3AKA0rWL58_d_bH8BTa2hMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2512387340</pqid></control><display><type>article</type><title>Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Yang, Yang ; Wu, Zhenyong ; Wang, Laurie ; Zhou, Kaifeng ; Xia, Kai ; Xiong, Qiancheng ; Liu, Longfei ; Zhang, Zhao ; Chapman, Edwin R. ; Xiong, Yong ; Melia, Thomas J. ; Karatekin, Erdem ; Gu, Hongzhou ; Lin, Chenxiang</creator><creatorcontrib>Yang, Yang ; Wu, Zhenyong ; Wang, Laurie ; Zhou, Kaifeng ; Xia, Kai ; Xiong, Qiancheng ; Liu, Longfei ; Zhang, Zhao ; Chapman, Edwin R. ; Xiong, Yong ; Melia, Thomas J. ; Karatekin, Erdem ; Gu, Hongzhou ; Lin, Chenxiang</creatorcontrib><description>In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA ‘nanobricks’ to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30–130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Small liposomes of uniform sizes are valuable tools for studying membrane biology and developing drug-delivery vehicles. Now, a DNA-assisted sorting technique has been shown to produce multiple species of monodispersed liposomes with mean diameters below 150 nm in a scalable manner. This approach has enabled the high-resolution analyses of curvature-dependent membrane protein activities.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00667-5</identifier><identifier>PMID: 33785892</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/2270 ; 639/925/926 ; Analytical Chemistry ; Autophagy-Related Protein 7 - metabolism ; Biochemistry ; Biology ; Centrifugation ; Centrifugation - methods ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cholesterol ; Cholesterol - analogs & derivatives ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Drug delivery systems ; Inorganic Chemistry ; Liposomes ; Liposomes - isolation & purification ; Liposomes - metabolism ; Membrane proteins ; Membranes ; Organic Chemistry ; Particle Size ; Physical Chemistry ; Proteins ; Radius of curvature ; SNAP receptors ; SNARE Proteins - metabolism ; Substrates</subject><ispartof>Nature chemistry, 2021-04, Vol.13 (4), p.335-342</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-e241f4464670219cf9b3803156066728f45605dac2871a174cf505d2deed571a3</citedby><cites>FETCH-LOGICAL-c577t-e241f4464670219cf9b3803156066728f45605dac2871a174cf505d2deed571a3</cites><orcidid>0000-0002-5934-8728 ; 0000-0002-9897-7391 ; 0000-0001-9625-9313 ; 0000-0001-5058-4815 ; 0000-0001-9787-8140 ; 0000-0001-7041-1946 ; 0000-0002-5760-2964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-021-00667-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-021-00667-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33785892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Wu, Zhenyong</creatorcontrib><creatorcontrib>Wang, Laurie</creatorcontrib><creatorcontrib>Zhou, Kaifeng</creatorcontrib><creatorcontrib>Xia, Kai</creatorcontrib><creatorcontrib>Xiong, Qiancheng</creatorcontrib><creatorcontrib>Liu, Longfei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Chapman, Edwin R.</creatorcontrib><creatorcontrib>Xiong, Yong</creatorcontrib><creatorcontrib>Melia, Thomas J.</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Gu, Hongzhou</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><title>Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA ‘nanobricks’ to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30–130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Small liposomes of uniform sizes are valuable tools for studying membrane biology and developing drug-delivery vehicles. Now, a DNA-assisted sorting technique has been shown to produce multiple species of monodispersed liposomes with mean diameters below 150 nm in a scalable manner. This approach has enabled the high-resolution analyses of curvature-dependent membrane protein activities.</description><subject>631/57/2270</subject><subject>639/925/926</subject><subject>Analytical Chemistry</subject><subject>Autophagy-Related Protein 7 - metabolism</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Centrifugation</subject><subject>Centrifugation - methods</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cholesterol</subject><subject>Cholesterol - analogs & derivatives</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Drug delivery systems</subject><subject>Inorganic Chemistry</subject><subject>Liposomes</subject><subject>Liposomes - isolation & purification</subject><subject>Liposomes - metabolism</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Organic Chemistry</subject><subject>Particle Size</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Radius of curvature</subject><subject>SNAP receptors</subject><subject>SNARE Proteins - metabolism</subject><subject>Substrates</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtP3TAQhS3UCijtH2CBInXTjVs_Y2dTCUFfEioL6NpyHOdiSOKLJ0Giv74Dl962LLryeM7n4zkaQg45e8-ZtB9Aca0NZYJTxuraUL1D9rnRmiqpmhfbWrI98grgGiEteb1L9qQ0VttG7JOLi1zmNK0qWFrKNaPTWA1pnSGPEarcV10C1MNcQfqJnfa-Ov1-TNuSwg31AKjGrgpxmkvql5WfU55ek5e9HyC-eToPyI_Pny5PvtKz8y_fTo7PaNDGzDQKxXulalUbjNCEvmmlZZLr-iGMsL3CSnc-CGu450aFXuNddDF2GjvygHzc-K6Xdozd4xB-cOuSRl_uXfbJ_atM6cqt8p2zTDWNkWjw7smg5NslwuzGBCEOg59iXsAJzQwOZ61B9O0z9DovZcJ4SHEhEVEMKbGhQskAJfbbYThzDztzm505DOwed-Y0Pjr6O8b2ye8lISA3AKA0rWL58_d_bH8BTa2hMw</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yang, Yang</creator><creator>Wu, Zhenyong</creator><creator>Wang, Laurie</creator><creator>Zhou, Kaifeng</creator><creator>Xia, Kai</creator><creator>Xiong, Qiancheng</creator><creator>Liu, Longfei</creator><creator>Zhang, Zhao</creator><creator>Chapman, Edwin R.</creator><creator>Xiong, Yong</creator><creator>Melia, Thomas J.</creator><creator>Karatekin, Erdem</creator><creator>Gu, Hongzhou</creator><creator>Lin, Chenxiang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5934-8728</orcidid><orcidid>https://orcid.org/0000-0002-9897-7391</orcidid><orcidid>https://orcid.org/0000-0001-9625-9313</orcidid><orcidid>https://orcid.org/0000-0001-5058-4815</orcidid><orcidid>https://orcid.org/0000-0001-9787-8140</orcidid><orcidid>https://orcid.org/0000-0001-7041-1946</orcidid><orcidid>https://orcid.org/0000-0002-5760-2964</orcidid></search><sort><creationdate>20210401</creationdate><title>Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation</title><author>Yang, Yang ; Wu, Zhenyong ; Wang, Laurie ; Zhou, Kaifeng ; Xia, Kai ; Xiong, Qiancheng ; Liu, Longfei ; Zhang, Zhao ; Chapman, Edwin R. ; Xiong, Yong ; Melia, Thomas J. ; Karatekin, Erdem ; Gu, Hongzhou ; Lin, Chenxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-e241f4464670219cf9b3803156066728f45605dac2871a174cf505d2deed571a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/57/2270</topic><topic>639/925/926</topic><topic>Analytical Chemistry</topic><topic>Autophagy-Related Protein 7 - metabolism</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Centrifugation</topic><topic>Centrifugation - methods</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cholesterol</topic><topic>Cholesterol - analogs & derivatives</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Drug delivery systems</topic><topic>Inorganic Chemistry</topic><topic>Liposomes</topic><topic>Liposomes - isolation & purification</topic><topic>Liposomes - metabolism</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Organic Chemistry</topic><topic>Particle Size</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Radius of curvature</topic><topic>SNAP receptors</topic><topic>SNARE Proteins - metabolism</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Wu, Zhenyong</creatorcontrib><creatorcontrib>Wang, Laurie</creatorcontrib><creatorcontrib>Zhou, Kaifeng</creatorcontrib><creatorcontrib>Xia, Kai</creatorcontrib><creatorcontrib>Xiong, Qiancheng</creatorcontrib><creatorcontrib>Liu, Longfei</creatorcontrib><creatorcontrib>Zhang, Zhao</creatorcontrib><creatorcontrib>Chapman, Edwin R.</creatorcontrib><creatorcontrib>Xiong, Yong</creatorcontrib><creatorcontrib>Melia, Thomas J.</creatorcontrib><creatorcontrib>Karatekin, Erdem</creatorcontrib><creatorcontrib>Gu, Hongzhou</creatorcontrib><creatorcontrib>Lin, Chenxiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yang</au><au>Wu, Zhenyong</au><au>Wang, Laurie</au><au>Zhou, Kaifeng</au><au>Xia, Kai</au><au>Xiong, Qiancheng</au><au>Liu, Longfei</au><au>Zhang, Zhao</au><au>Chapman, Edwin R.</au><au>Xiong, Yong</au><au>Melia, Thomas J.</au><au>Karatekin, Erdem</au><au>Gu, Hongzhou</au><au>Lin, Chenxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>13</volume><issue>4</issue><spage>335</spage><epage>342</epage><pages>335-342</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA ‘nanobricks’ to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30–130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Small liposomes of uniform sizes are valuable tools for studying membrane biology and developing drug-delivery vehicles. Now, a DNA-assisted sorting technique has been shown to produce multiple species of monodispersed liposomes with mean diameters below 150 nm in a scalable manner. This approach has enabled the high-resolution analyses of curvature-dependent membrane protein activities.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33785892</pmid><doi>10.1038/s41557-021-00667-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5934-8728</orcidid><orcidid>https://orcid.org/0000-0002-9897-7391</orcidid><orcidid>https://orcid.org/0000-0001-9625-9313</orcidid><orcidid>https://orcid.org/0000-0001-5058-4815</orcidid><orcidid>https://orcid.org/0000-0001-9787-8140</orcidid><orcidid>https://orcid.org/0000-0001-7041-1946</orcidid><orcidid>https://orcid.org/0000-0002-5760-2964</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-04, Vol.13 (4), p.335-342 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8049973 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/57/2270 639/925/926 Analytical Chemistry Autophagy-Related Protein 7 - metabolism Biochemistry Biology Centrifugation Centrifugation - methods Chemical composition Chemistry Chemistry and Materials Science Chemistry/Food Science Cholesterol Cholesterol - analogs & derivatives Deoxyribonucleic acid DNA DNA - chemistry Drug delivery systems Inorganic Chemistry Liposomes Liposomes - isolation & purification Liposomes - metabolism Membrane proteins Membranes Organic Chemistry Particle Size Physical Chemistry Proteins Radius of curvature SNAP receptors SNARE Proteins - metabolism Substrates |
title | Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A28%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sorting%20sub-150-nm%20liposomes%20of%20distinct%20sizes%20by%20DNA-brick-assisted%20centrifugation&rft.jtitle=Nature%20chemistry&rft.au=Yang,%20Yang&rft.date=2021-04-01&rft.volume=13&rft.issue=4&rft.spage=335&rft.epage=342&rft.pages=335-342&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00667-5&rft_dat=%3Cproquest_pubme%3E2507670887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2512387340&rft_id=info:pmid/33785892&rfr_iscdi=true |