Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy

Formylation of 2,6‐dichloro‐5‐R‐nicotinic acids at C‐4 followed by condensation with 3‐hydroxy‐N,N‐dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6‐dichloro‐5‐R‐nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2021-04, Vol.27 (19), p.6070-6076
Hauptverfasser: Grimm, Florian, Rehman, Jasmin, Stoldt, Stefan, Khan, Taukeer A., Schlötel, Jan Gero, Nizamov, Shamil, John, Michael, Belov, Vladimir N., Hell, Stefan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6076
container_issue 19
container_start_page 6070
container_title Chemistry : a European journal
container_volume 27
creator Grimm, Florian
Rehman, Jasmin
Stoldt, Stefan
Khan, Taukeer A.
Schlötel, Jan Gero
Nizamov, Shamil
John, Michael
Belov, Vladimir N.
Hell, Stefan W.
description Formylation of 2,6‐dichloro‐5‐R‐nicotinic acids at C‐4 followed by condensation with 3‐hydroxy‐N,N‐dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6‐dichloro‐5‐R‐nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with “small molecules” provided specific labeling (covalent and non‐covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two‐color STED microscopy with a 775 nm STED laser. Tetramethyl Rhodamine (TMR) is out of fashion? Fluorescent TMR‐clones containing a 6‐chloronicotinic acid residue were synthesized, attached to ligands and applied for selective and vital labelling of intracellular targets. Superresolution STED microscopy in one‐ and two‐colors demonstrated high optical resolution and target specificity of the good old TMR scaffold.
doi_str_mv 10.1002/chem.202005134
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509223223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5054-c61eb82ef9dc23156a707876b6392272322b3c958bb801514435589430745c033</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCliWyxIZNhutn4g1SFaYPaSokWpbIcjyexlUSD3bSav59PZoyQDfd3Lu4n4_O8UHoA4E5AaBfbOv6OQUKIAjjr9CMCEoKVkrxGs1A8bKQgqkjdJzSHQAoydhbdMQYV1KpaoZ-_WjDyvR-cAk_-LHFBtdtF2IYvA2jzxOfWr_CZ9Hc9m4Y8TpEvPT3Dteu6_D1tHExuhS6afRhwNc3i2_4ytsYkg2b7Tv0Zm265N4_7RP082xxU18Uy-_nl_XpsrACBC-sJK6pqFurlaWMCGlKKKtSNpIpSkvKKG2YVaJqmgqIIJwzISrFGZRcWGDsBH3d626mpncrm41G0-lN9L2JWx2M1_9fBt_q23CvK-CVKmUW-PwkEMPvyaVR9z7ZnNAMLkxJU14RQvIUGf30DL0LUxxyPE0FZL_Z7c7RfE_tviJFtz6YIaB3zeldc_rQXH7w8d8IB_xPVRlQe-DBd277gpyuLxZXf8UfAeEvo_8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509223223</pqid></control><display><type>article</type><title>Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Grimm, Florian ; Rehman, Jasmin ; Stoldt, Stefan ; Khan, Taukeer A. ; Schlötel, Jan Gero ; Nizamov, Shamil ; John, Michael ; Belov, Vladimir N. ; Hell, Stefan W.</creator><creatorcontrib>Grimm, Florian ; Rehman, Jasmin ; Stoldt, Stefan ; Khan, Taukeer A. ; Schlötel, Jan Gero ; Nizamov, Shamil ; John, Michael ; Belov, Vladimir N. ; Hell, Stefan W.</creatorcontrib><description>Formylation of 2,6‐dichloro‐5‐R‐nicotinic acids at C‐4 followed by condensation with 3‐hydroxy‐N,N‐dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6‐dichloro‐5‐R‐nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with “small molecules” provided specific labeling (covalent and non‐covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two‐color STED microscopy with a 775 nm STED laser. Tetramethyl Rhodamine (TMR) is out of fashion? Fluorescent TMR‐clones containing a 6‐chloronicotinic acid residue were synthesized, attached to ligands and applied for selective and vital labelling of intracellular targets. Superresolution STED microscopy in one‐ and two‐colors demonstrated high optical resolution and target specificity of the good old TMR scaffold.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202005134</identifier><identifier>PMID: 33496998</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acids ; Carboxylic acids ; Chemistry ; Chlorine ; Color ; Cytoskeleton ; Dyes ; dyes/pigments ; fluorescence ; Fluorescent Dyes ; Fluorescent indicators ; fluorescent probes ; Lasers ; Microscopy ; Microscopy, Fluorescence ; Nicotinic acid ; Nitrogen ; Organelles ; Pyridines ; Rhodamine ; Rhodamines ; scanning probe microscopy ; Thioglycolic acid</subject><ispartof>Chemistry : a European journal, 2021-04, Vol.27 (19), p.6070-6076</ispartof><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5054-c61eb82ef9dc23156a707876b6392272322b3c958bb801514435589430745c033</citedby><cites>FETCH-LOGICAL-c5054-c61eb82ef9dc23156a707876b6392272322b3c958bb801514435589430745c033</cites><orcidid>0000-0002-6157-1734 ; 0000-0002-5786-9028 ; 0000-0001-5483-5837 ; 0000-0001-7619-4006 ; 0000-0002-7741-4653 ; 0000-0002-9638-5077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202005134$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202005134$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33496998$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grimm, Florian</creatorcontrib><creatorcontrib>Rehman, Jasmin</creatorcontrib><creatorcontrib>Stoldt, Stefan</creatorcontrib><creatorcontrib>Khan, Taukeer A.</creatorcontrib><creatorcontrib>Schlötel, Jan Gero</creatorcontrib><creatorcontrib>Nizamov, Shamil</creatorcontrib><creatorcontrib>John, Michael</creatorcontrib><creatorcontrib>Belov, Vladimir N.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><title>Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Formylation of 2,6‐dichloro‐5‐R‐nicotinic acids at C‐4 followed by condensation with 3‐hydroxy‐N,N‐dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6‐dichloro‐5‐R‐nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with “small molecules” provided specific labeling (covalent and non‐covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two‐color STED microscopy with a 775 nm STED laser. Tetramethyl Rhodamine (TMR) is out of fashion? Fluorescent TMR‐clones containing a 6‐chloronicotinic acid residue were synthesized, attached to ligands and applied for selective and vital labelling of intracellular targets. Superresolution STED microscopy in one‐ and two‐colors demonstrated high optical resolution and target specificity of the good old TMR scaffold.</description><subject>Acids</subject><subject>Carboxylic acids</subject><subject>Chemistry</subject><subject>Chlorine</subject><subject>Color</subject><subject>Cytoskeleton</subject><subject>Dyes</subject><subject>dyes/pigments</subject><subject>fluorescence</subject><subject>Fluorescent Dyes</subject><subject>Fluorescent indicators</subject><subject>fluorescent probes</subject><subject>Lasers</subject><subject>Microscopy</subject><subject>Microscopy, Fluorescence</subject><subject>Nicotinic acid</subject><subject>Nitrogen</subject><subject>Organelles</subject><subject>Pyridines</subject><subject>Rhodamine</subject><subject>Rhodamines</subject><subject>scanning probe microscopy</subject><subject>Thioglycolic acid</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EotPCliWyxIZNhutn4g1SFaYPaSokWpbIcjyexlUSD3bSav59PZoyQDfd3Lu4n4_O8UHoA4E5AaBfbOv6OQUKIAjjr9CMCEoKVkrxGs1A8bKQgqkjdJzSHQAoydhbdMQYV1KpaoZ-_WjDyvR-cAk_-LHFBtdtF2IYvA2jzxOfWr_CZ9Hc9m4Y8TpEvPT3Dteu6_D1tHExuhS6afRhwNc3i2_4ytsYkg2b7Tv0Zm265N4_7RP082xxU18Uy-_nl_XpsrACBC-sJK6pqFurlaWMCGlKKKtSNpIpSkvKKG2YVaJqmgqIIJwzISrFGZRcWGDsBH3d626mpncrm41G0-lN9L2JWx2M1_9fBt_q23CvK-CVKmUW-PwkEMPvyaVR9z7ZnNAMLkxJU14RQvIUGf30DL0LUxxyPE0FZL_Z7c7RfE_tviJFtz6YIaB3zeldc_rQXH7w8d8IB_xPVRlQe-DBd277gpyuLxZXf8UfAeEvo_8</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Grimm, Florian</creator><creator>Rehman, Jasmin</creator><creator>Stoldt, Stefan</creator><creator>Khan, Taukeer A.</creator><creator>Schlötel, Jan Gero</creator><creator>Nizamov, Shamil</creator><creator>John, Michael</creator><creator>Belov, Vladimir N.</creator><creator>Hell, Stefan W.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6157-1734</orcidid><orcidid>https://orcid.org/0000-0002-5786-9028</orcidid><orcidid>https://orcid.org/0000-0001-5483-5837</orcidid><orcidid>https://orcid.org/0000-0001-7619-4006</orcidid><orcidid>https://orcid.org/0000-0002-7741-4653</orcidid><orcidid>https://orcid.org/0000-0002-9638-5077</orcidid></search><sort><creationdate>20210401</creationdate><title>Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy</title><author>Grimm, Florian ; Rehman, Jasmin ; Stoldt, Stefan ; Khan, Taukeer A. ; Schlötel, Jan Gero ; Nizamov, Shamil ; John, Michael ; Belov, Vladimir N. ; Hell, Stefan W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5054-c61eb82ef9dc23156a707876b6392272322b3c958bb801514435589430745c033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acids</topic><topic>Carboxylic acids</topic><topic>Chemistry</topic><topic>Chlorine</topic><topic>Color</topic><topic>Cytoskeleton</topic><topic>Dyes</topic><topic>dyes/pigments</topic><topic>fluorescence</topic><topic>Fluorescent Dyes</topic><topic>Fluorescent indicators</topic><topic>fluorescent probes</topic><topic>Lasers</topic><topic>Microscopy</topic><topic>Microscopy, Fluorescence</topic><topic>Nicotinic acid</topic><topic>Nitrogen</topic><topic>Organelles</topic><topic>Pyridines</topic><topic>Rhodamine</topic><topic>Rhodamines</topic><topic>scanning probe microscopy</topic><topic>Thioglycolic acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grimm, Florian</creatorcontrib><creatorcontrib>Rehman, Jasmin</creatorcontrib><creatorcontrib>Stoldt, Stefan</creatorcontrib><creatorcontrib>Khan, Taukeer A.</creatorcontrib><creatorcontrib>Schlötel, Jan Gero</creatorcontrib><creatorcontrib>Nizamov, Shamil</creatorcontrib><creatorcontrib>John, Michael</creatorcontrib><creatorcontrib>Belov, Vladimir N.</creatorcontrib><creatorcontrib>Hell, Stefan W.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grimm, Florian</au><au>Rehman, Jasmin</au><au>Stoldt, Stefan</au><au>Khan, Taukeer A.</au><au>Schlötel, Jan Gero</au><au>Nizamov, Shamil</au><au>John, Michael</au><au>Belov, Vladimir N.</au><au>Hell, Stefan W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>27</volume><issue>19</issue><spage>6070</spage><epage>6076</epage><pages>6070-6076</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Formylation of 2,6‐dichloro‐5‐R‐nicotinic acids at C‐4 followed by condensation with 3‐hydroxy‐N,N‐dimethylaniline gave analogs of the popular TAMRA fluorescent dye with a 2,6‐dichloro‐5‐R‐nicotinic acid residues (R=H, F). The following reaction with thioglycolic acid is selective, involves only one chlorine atom at the carbon between pyridine nitrogen and the carboxylic acid group and affords new rhodamine dyes absorbing at 564/ 573 nm and emitting at 584/ 597 nm (R=H/ F, in aq. PBS). Conjugates of the dyes with “small molecules” provided specific labeling (covalent and non‐covalent) of organelles as well as of components of the cytoskeleton in living cells and were combined with fluorescent probes prepared from 610CP and SiR dyes and applied in two‐color STED microscopy with a 775 nm STED laser. Tetramethyl Rhodamine (TMR) is out of fashion? Fluorescent TMR‐clones containing a 6‐chloronicotinic acid residue were synthesized, attached to ligands and applied for selective and vital labelling of intracellular targets. Superresolution STED microscopy in one‐ and two‐colors demonstrated high optical resolution and target specificity of the good old TMR scaffold.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33496998</pmid><doi>10.1002/chem.202005134</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6157-1734</orcidid><orcidid>https://orcid.org/0000-0002-5786-9028</orcidid><orcidid>https://orcid.org/0000-0001-5483-5837</orcidid><orcidid>https://orcid.org/0000-0001-7619-4006</orcidid><orcidid>https://orcid.org/0000-0002-7741-4653</orcidid><orcidid>https://orcid.org/0000-0002-9638-5077</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2021-04, Vol.27 (19), p.6070-6076
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048976
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Acids
Carboxylic acids
Chemistry
Chlorine
Color
Cytoskeleton
Dyes
dyes/pigments
fluorescence
Fluorescent Dyes
Fluorescent indicators
fluorescent probes
Lasers
Microscopy
Microscopy, Fluorescence
Nicotinic acid
Nitrogen
Organelles
Pyridines
Rhodamine
Rhodamines
scanning probe microscopy
Thioglycolic acid
title Rhodamines with a Chloronicotinic Acid Fragment for Live Cell Superresolution STED Microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhodamines%20with%20a%20Chloronicotinic%20Acid%20Fragment%20for%20Live%20Cell%20Superresolution%20STED%20Microscopy&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Grimm,%20Florian&rft.date=2021-04-01&rft.volume=27&rft.issue=19&rft.spage=6070&rft.epage=6076&rft.pages=6070-6076&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202005134&rft_dat=%3Cproquest_pubme%3E2509223223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509223223&rft_id=info:pmid/33496998&rfr_iscdi=true