Topographic gradients define the projection patterns of the claustrum core and shell in mice

The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. There...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of comparative neurology (1911) 2021-05, Vol.529 (7), p.1607-1627
Hauptverfasser: Marriott, Brian A., Do, Alison D., Zahacy, Ryan, Jackson, Jesse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1627
container_issue 7
container_start_page 1607
container_title Journal of comparative neurology (1911)
container_volume 529
creator Marriott, Brian A.
Do, Alison D.
Zahacy, Ryan
Jackson, Jesse
description The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks. Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.
doi_str_mv 10.1002/cne.25043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509242038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</originalsourceid><addsrcrecordid>eNp1kV1LHDEYhYMo7tZ60T8gAW_ai9F8zGYmN4Is9gOkvbF3Qshk3uxmmUnGZMbiv290t0sVvDq8nIfDezgIfaLkghLCLo2HC7YgJT9Ac0qkKGQt6CGaZ48WUopqhj6ktCGESMnrYzTjTFYLTsUc3d-FIayiHtbO4KytAz8m3IJ1HvC4BjzEsAEzuuDxoMcRok842BfLdHpKY5x6bEIErH2L0xq6DjuPe2fgIzqyuktwutMT9Pvrzd3ye3H769uP5fVtYRZE8oIZocFYTXVrF9ICCE2pbPPNuQYraENqUVLSaFlSJpnh1NCGVTURjba24ifoaps7TE0PrckVou7UEF2v45MK2qnXjndrtQqPqiZlLanIAZ93ATE8TJBG1btkchPtIUxJsbIUQsiyYhk9f4NuwhR9rqfyBJKVjPA6U1-2lIkhpQh2_wwl6nkzlTdTL5tl9uz_7_fkv5EycLkF_rgOnt5PUsufN9vIv28_oj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509242038</pqid></control><display><type>article</type><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</creator><creatorcontrib>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</creatorcontrib><description>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks. Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.25043</identifier><identifier>PMID: 32975316</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Attention ; Basal ganglia ; claustrocortical ; Claustrum - anatomy &amp; histology ; connectivity ; Female ; interneurons ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways - anatomy &amp; histology ; Neuropeptide Y ; Parvalbumin ; retrograde tracing ; RRID:AB_10000345 ; RRID:AB_2255365 ; RRID:IMSR_JAX:008069 ; Sleep ; Somatostatin ; Temporal cortex ; Temporal lobe ; Topography</subject><ispartof>Journal of comparative neurology (1911), 2021-05, Vol.529 (7), p.1607-1627</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</citedby><cites>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</cites><orcidid>0000-0003-1870-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.25043$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.25043$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32975316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marriott, Brian A.</creatorcontrib><creatorcontrib>Do, Alison D.</creatorcontrib><creatorcontrib>Zahacy, Ryan</creatorcontrib><creatorcontrib>Jackson, Jesse</creatorcontrib><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks. Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</description><subject>Animals</subject><subject>Attention</subject><subject>Basal ganglia</subject><subject>claustrocortical</subject><subject>Claustrum - anatomy &amp; histology</subject><subject>connectivity</subject><subject>Female</subject><subject>interneurons</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neural Pathways - anatomy &amp; histology</subject><subject>Neuropeptide Y</subject><subject>Parvalbumin</subject><subject>retrograde tracing</subject><subject>RRID:AB_10000345</subject><subject>RRID:AB_2255365</subject><subject>RRID:IMSR_JAX:008069</subject><subject>Sleep</subject><subject>Somatostatin</subject><subject>Temporal cortex</subject><subject>Temporal lobe</subject><subject>Topography</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEYhYMo7tZ60T8gAW_ai9F8zGYmN4Is9gOkvbF3Qshk3uxmmUnGZMbiv290t0sVvDq8nIfDezgIfaLkghLCLo2HC7YgJT9Ac0qkKGQt6CGaZ48WUopqhj6ktCGESMnrYzTjTFYLTsUc3d-FIayiHtbO4KytAz8m3IJ1HvC4BjzEsAEzuuDxoMcRok842BfLdHpKY5x6bEIErH2L0xq6DjuPe2fgIzqyuktwutMT9Pvrzd3ye3H769uP5fVtYRZE8oIZocFYTXVrF9ICCE2pbPPNuQYraENqUVLSaFlSJpnh1NCGVTURjba24ifoaps7TE0PrckVou7UEF2v45MK2qnXjndrtQqPqiZlLanIAZ93ATE8TJBG1btkchPtIUxJsbIUQsiyYhk9f4NuwhR9rqfyBJKVjPA6U1-2lIkhpQh2_wwl6nkzlTdTL5tl9uz_7_fkv5EycLkF_rgOnt5PUsufN9vIv28_oj8</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Marriott, Brian A.</creator><creator>Do, Alison D.</creator><creator>Zahacy, Ryan</creator><creator>Jackson, Jesse</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1870-5757</orcidid></search><sort><creationdate>20210501</creationdate><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><author>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Attention</topic><topic>Basal ganglia</topic><topic>claustrocortical</topic><topic>Claustrum - anatomy &amp; histology</topic><topic>connectivity</topic><topic>Female</topic><topic>interneurons</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neural Pathways - anatomy &amp; histology</topic><topic>Neuropeptide Y</topic><topic>Parvalbumin</topic><topic>retrograde tracing</topic><topic>RRID:AB_10000345</topic><topic>RRID:AB_2255365</topic><topic>RRID:IMSR_JAX:008069</topic><topic>Sleep</topic><topic>Somatostatin</topic><topic>Temporal cortex</topic><topic>Temporal lobe</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marriott, Brian A.</creatorcontrib><creatorcontrib>Do, Alison D.</creatorcontrib><creatorcontrib>Zahacy, Ryan</creatorcontrib><creatorcontrib>Jackson, Jesse</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marriott, Brian A.</au><au>Do, Alison D.</au><au>Zahacy, Ryan</au><au>Jackson, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographic gradients define the projection patterns of the claustrum core and shell in mice</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>529</volume><issue>7</issue><spage>1607</spage><epage>1627</epage><pages>1607-1627</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks. Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32975316</pmid><doi>10.1002/cne.25043</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1870-5757</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9967
ispartof Journal of comparative neurology (1911), 2021-05, Vol.529 (7), p.1607-1627
issn 0021-9967
1096-9861
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048916
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Attention
Basal ganglia
claustrocortical
Claustrum - anatomy & histology
connectivity
Female
interneurons
Male
Mice
Mice, Inbred C57BL
Neural Pathways - anatomy & histology
Neuropeptide Y
Parvalbumin
retrograde tracing
RRID:AB_10000345
RRID:AB_2255365
RRID:IMSR_JAX:008069
Sleep
Somatostatin
Temporal cortex
Temporal lobe
Topography
title Topographic gradients define the projection patterns of the claustrum core and shell in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographic%20gradients%20define%20the%20projection%20patterns%20of%20the%20claustrum%20core%20and%20shell%20in%20mice&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Marriott,%20Brian%20A.&rft.date=2021-05-01&rft.volume=529&rft.issue=7&rft.spage=1607&rft.epage=1627&rft.pages=1607-1627&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.25043&rft_dat=%3Cproquest_pubme%3E2509242038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509242038&rft_id=info:pmid/32975316&rfr_iscdi=true