Topographic gradients define the projection patterns of the claustrum core and shell in mice
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. There...
Gespeichert in:
Veröffentlicht in: | Journal of comparative neurology (1911) 2021-05, Vol.529 (7), p.1607-1627 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1627 |
---|---|
container_issue | 7 |
container_start_page | 1607 |
container_title | Journal of comparative neurology (1911) |
container_volume | 529 |
creator | Marriott, Brian A. Do, Alison D. Zahacy, Ryan Jackson, Jesse |
description | The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study. |
doi_str_mv | 10.1002/cne.25043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509242038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</originalsourceid><addsrcrecordid>eNp1kV1LHDEYhYMo7tZ60T8gAW_ai9F8zGYmN4Is9gOkvbF3Qshk3uxmmUnGZMbiv290t0sVvDq8nIfDezgIfaLkghLCLo2HC7YgJT9Ac0qkKGQt6CGaZ48WUopqhj6ktCGESMnrYzTjTFYLTsUc3d-FIayiHtbO4KytAz8m3IJ1HvC4BjzEsAEzuuDxoMcRok842BfLdHpKY5x6bEIErH2L0xq6DjuPe2fgIzqyuktwutMT9Pvrzd3ye3H769uP5fVtYRZE8oIZocFYTXVrF9ICCE2pbPPNuQYraENqUVLSaFlSJpnh1NCGVTURjba24ifoaps7TE0PrckVou7UEF2v45MK2qnXjndrtQqPqiZlLanIAZ93ATE8TJBG1btkchPtIUxJsbIUQsiyYhk9f4NuwhR9rqfyBJKVjPA6U1-2lIkhpQh2_wwl6nkzlTdTL5tl9uz_7_fkv5EycLkF_rgOnt5PUsufN9vIv28_oj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509242038</pqid></control><display><type>article</type><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</creator><creatorcontrib>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</creatorcontrib><description>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</description><identifier>ISSN: 0021-9967</identifier><identifier>EISSN: 1096-9861</identifier><identifier>DOI: 10.1002/cne.25043</identifier><identifier>PMID: 32975316</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Attention ; Basal ganglia ; claustrocortical ; Claustrum - anatomy & histology ; connectivity ; Female ; interneurons ; Male ; Mice ; Mice, Inbred C57BL ; Neural Pathways - anatomy & histology ; Neuropeptide Y ; Parvalbumin ; retrograde tracing ; RRID:AB_10000345 ; RRID:AB_2255365 ; RRID:IMSR_JAX:008069 ; Sleep ; Somatostatin ; Temporal cortex ; Temporal lobe ; Topography</subject><ispartof>Journal of comparative neurology (1911), 2021-05, Vol.529 (7), p.1607-1627</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. The Journal of Comparative Neurology published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</citedby><cites>FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</cites><orcidid>0000-0003-1870-5757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcne.25043$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcne.25043$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32975316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marriott, Brian A.</creatorcontrib><creatorcontrib>Do, Alison D.</creatorcontrib><creatorcontrib>Zahacy, Ryan</creatorcontrib><creatorcontrib>Jackson, Jesse</creatorcontrib><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><title>Journal of comparative neurology (1911)</title><addtitle>J Comp Neurol</addtitle><description>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</description><subject>Animals</subject><subject>Attention</subject><subject>Basal ganglia</subject><subject>claustrocortical</subject><subject>Claustrum - anatomy & histology</subject><subject>connectivity</subject><subject>Female</subject><subject>interneurons</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Neural Pathways - anatomy & histology</subject><subject>Neuropeptide Y</subject><subject>Parvalbumin</subject><subject>retrograde tracing</subject><subject>RRID:AB_10000345</subject><subject>RRID:AB_2255365</subject><subject>RRID:IMSR_JAX:008069</subject><subject>Sleep</subject><subject>Somatostatin</subject><subject>Temporal cortex</subject><subject>Temporal lobe</subject><subject>Topography</subject><issn>0021-9967</issn><issn>1096-9861</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kV1LHDEYhYMo7tZ60T8gAW_ai9F8zGYmN4Is9gOkvbF3Qshk3uxmmUnGZMbiv290t0sVvDq8nIfDezgIfaLkghLCLo2HC7YgJT9Ac0qkKGQt6CGaZ48WUopqhj6ktCGESMnrYzTjTFYLTsUc3d-FIayiHtbO4KytAz8m3IJ1HvC4BjzEsAEzuuDxoMcRok842BfLdHpKY5x6bEIErH2L0xq6DjuPe2fgIzqyuktwutMT9Pvrzd3ye3H769uP5fVtYRZE8oIZocFYTXVrF9ICCE2pbPPNuQYraENqUVLSaFlSJpnh1NCGVTURjba24ifoaps7TE0PrckVou7UEF2v45MK2qnXjndrtQqPqiZlLanIAZ93ATE8TJBG1btkchPtIUxJsbIUQsiyYhk9f4NuwhR9rqfyBJKVjPA6U1-2lIkhpQh2_wwl6nkzlTdTL5tl9uz_7_fkv5EycLkF_rgOnt5PUsufN9vIv28_oj8</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Marriott, Brian A.</creator><creator>Do, Alison D.</creator><creator>Zahacy, Ryan</creator><creator>Jackson, Jesse</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1870-5757</orcidid></search><sort><creationdate>20210501</creationdate><title>Topographic gradients define the projection patterns of the claustrum core and shell in mice</title><author>Marriott, Brian A. ; Do, Alison D. ; Zahacy, Ryan ; Jackson, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5093-2c6aecfa1adf59fee6a119da1a33aef61b086410ba941292c31c1b27806baff73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Attention</topic><topic>Basal ganglia</topic><topic>claustrocortical</topic><topic>Claustrum - anatomy & histology</topic><topic>connectivity</topic><topic>Female</topic><topic>interneurons</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Neural Pathways - anatomy & histology</topic><topic>Neuropeptide Y</topic><topic>Parvalbumin</topic><topic>retrograde tracing</topic><topic>RRID:AB_10000345</topic><topic>RRID:AB_2255365</topic><topic>RRID:IMSR_JAX:008069</topic><topic>Sleep</topic><topic>Somatostatin</topic><topic>Temporal cortex</topic><topic>Temporal lobe</topic><topic>Topography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marriott, Brian A.</creatorcontrib><creatorcontrib>Do, Alison D.</creatorcontrib><creatorcontrib>Zahacy, Ryan</creatorcontrib><creatorcontrib>Jackson, Jesse</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of comparative neurology (1911)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marriott, Brian A.</au><au>Do, Alison D.</au><au>Zahacy, Ryan</au><au>Jackson, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topographic gradients define the projection patterns of the claustrum core and shell in mice</atitle><jtitle>Journal of comparative neurology (1911)</jtitle><addtitle>J Comp Neurol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>529</volume><issue>7</issue><spage>1607</spage><epage>1627</epage><pages>1607-1627</pages><issn>0021-9967</issn><eissn>1096-9861</eissn><abstract>The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co‐projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal‐midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Claustrocortical projections are organized across the dorsoventral axis and map onto the rostrocaudal axis of the cortex. Interneuron subtypes are differentially localized to the core and shell of the claustrum. The lines linking claustrum and cortex highlight some of the most numerous and divergent claustrocortical pathways identified in this study.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32975316</pmid><doi>10.1002/cne.25043</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1870-5757</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9967 |
ispartof | Journal of comparative neurology (1911), 2021-05, Vol.529 (7), p.1607-1627 |
issn | 0021-9967 1096-9861 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048916 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Attention Basal ganglia claustrocortical Claustrum - anatomy & histology connectivity Female interneurons Male Mice Mice, Inbred C57BL Neural Pathways - anatomy & histology Neuropeptide Y Parvalbumin retrograde tracing RRID:AB_10000345 RRID:AB_2255365 RRID:IMSR_JAX:008069 Sleep Somatostatin Temporal cortex Temporal lobe Topography |
title | Topographic gradients define the projection patterns of the claustrum core and shell in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topographic%20gradients%20define%20the%20projection%20patterns%20of%20the%20claustrum%20core%20and%20shell%20in%20mice&rft.jtitle=Journal%20of%20comparative%20neurology%20(1911)&rft.au=Marriott,%20Brian%20A.&rft.date=2021-05-01&rft.volume=529&rft.issue=7&rft.spage=1607&rft.epage=1627&rft.pages=1607-1627&rft.issn=0021-9967&rft.eissn=1096-9861&rft_id=info:doi/10.1002/cne.25043&rft_dat=%3Cproquest_pubme%3E2509242038%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509242038&rft_id=info:pmid/32975316&rfr_iscdi=true |