Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity

Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of biomedical engineering 2020-05, Vol.48 (5), p.1463-1474
Hauptverfasser: Ross, Colton J., Laurence, Devin W., Hsu, Ming-Chen, Baumwart, Ryan, Zhao, Yan D., Mir, Arshid, Burkhart, Harold M., Holzapfel, Gerhard A., Wu, Yi, Lee, Chung-Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1474
container_issue 5
container_start_page 1463
container_title Annals of biomedical engineering
container_volume 48
creator Ross, Colton J.
Laurence, Devin W.
Hsu, Ming-Chen
Baumwart, Ryan
Zhao, Yan D.
Mir, Arshid
Burkhart, Harold M.
Holzapfel, Gerhard A.
Wu, Yi
Lee, Chung-Hao
description Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet–chordae–papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09–1.16, while peak stretches of 1.08–1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.
doi_str_mv 10.1007/s10439-020-02464-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389111484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-c2828252e37f1f8bb2eb392cf991b128d2417e6c03063bb64114d66453165f8a3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EokvLC3BAlrj0EvC_OM4FCa0KrbQVlWi5Wo4z2U2VdRbbqVROfQdOvF6fhCm7tIUDsiyPNL_5PJ8-Ql5x9pYzVr1LnClZF0wwvEqrQj8hM15Wsqi10U_JjLGaFbrWao-8SOmSMc6NLJ-TPSkY00JXM_L9FPzKhd4nOnb0bIy-D0CPwcVMv7rhCtLtzU_6Jccp0_lqjK0Deg6hRQqrk4BA7pcuQ0tdoo4uwHUD5NubHzsaqzO36YfBxWt6OiU_AD0Kuc_XB-RZ54YEL3fvPrn4eHQ-Py4Wnz-dzD8sCl9yngsvDJ5SgKw63pmmEdDIWviurnnDhWmF4hVozyTTsmm04ly1WqtScl12xsl98n6ru5maNbQeQo5usJvYr3EnO7re_t0J_couxytrmDJVpVDgcCcQx28TGrbrPnlASwHGKVkhS8YMghLRN_-gl-MUA9pDytQcdzN3gmJL-TimFKG7X4Yzexet3UZrMVr7O1qrcej1Yxv3I3-yREBugYStsIT48Pd_ZH8BHSqyQg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389111484</pqid></control><display><type>article</type><title>Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Ross, Colton J. ; Laurence, Devin W. ; Hsu, Ming-Chen ; Baumwart, Ryan ; Zhao, Yan D. ; Mir, Arshid ; Burkhart, Harold M. ; Holzapfel, Gerhard A. ; Wu, Yi ; Lee, Chung-Hao</creator><creatorcontrib>Ross, Colton J. ; Laurence, Devin W. ; Hsu, Ming-Chen ; Baumwart, Ryan ; Zhao, Yan D. ; Mir, Arshid ; Burkhart, Harold M. ; Holzapfel, Gerhard A. ; Wu, Yi ; Lee, Chung-Hao</creatorcontrib><description>Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet–chordae–papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09–1.16, while peak stretches of 1.08–1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.</description><identifier>ISSN: 0090-6964</identifier><identifier>ISSN: 1573-9686</identifier><identifier>EISSN: 1573-9686</identifier><identifier>DOI: 10.1007/s10439-020-02464-6</identifier><identifier>PMID: 32006267</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animals ; Biochemistry ; Biological and Medical Physics ; Biomechanical Phenomena ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; Biophysics ; Blood flow ; Cardiovascular diseases ; Chordae Tendineae - physiology ; Classical Mechanics ; Computer applications ; Coronary artery disease ; Heart ; Heart diseases ; Heart valves ; In vivo methods and tests ; Mathematical models ; Mechanical properties ; Mechanical tests ; Mechanics (physics) ; Mitral valve ; Mitral Valve - physiology ; Muscles ; Original Article ; Papillary Muscles - physiology ; Rheumatic heart disease ; Swine ; Tricuspid valve ; Tricuspid Valve - physiology</subject><ispartof>Annals of biomedical engineering, 2020-05, Vol.48 (5), p.1463-1474</ispartof><rights>Biomedical Engineering Society 2020</rights><rights>Biomedical Engineering Society 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-c2828252e37f1f8bb2eb392cf991b128d2417e6c03063bb64114d66453165f8a3</citedby><cites>FETCH-LOGICAL-c511t-c2828252e37f1f8bb2eb392cf991b128d2417e6c03063bb64114d66453165f8a3</cites><orcidid>0000-0002-8019-3329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10439-020-02464-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10439-020-02464-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32006267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Colton J.</creatorcontrib><creatorcontrib>Laurence, Devin W.</creatorcontrib><creatorcontrib>Hsu, Ming-Chen</creatorcontrib><creatorcontrib>Baumwart, Ryan</creatorcontrib><creatorcontrib>Zhao, Yan D.</creatorcontrib><creatorcontrib>Mir, Arshid</creatorcontrib><creatorcontrib>Burkhart, Harold M.</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A.</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Lee, Chung-Hao</creatorcontrib><title>Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity</title><title>Annals of biomedical engineering</title><addtitle>Ann Biomed Eng</addtitle><addtitle>Ann Biomed Eng</addtitle><description>Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet–chordae–papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09–1.16, while peak stretches of 1.08–1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biomechanical Phenomena</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Biophysics</subject><subject>Blood flow</subject><subject>Cardiovascular diseases</subject><subject>Chordae Tendineae - physiology</subject><subject>Classical Mechanics</subject><subject>Computer applications</subject><subject>Coronary artery disease</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart valves</subject><subject>In vivo methods and tests</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanical tests</subject><subject>Mechanics (physics)</subject><subject>Mitral valve</subject><subject>Mitral Valve - physiology</subject><subject>Muscles</subject><subject>Original Article</subject><subject>Papillary Muscles - physiology</subject><subject>Rheumatic heart disease</subject><subject>Swine</subject><subject>Tricuspid valve</subject><subject>Tricuspid Valve - physiology</subject><issn>0090-6964</issn><issn>1573-9686</issn><issn>1573-9686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQxi0EokvLC3BAlrj0EvC_OM4FCa0KrbQVlWi5Wo4z2U2VdRbbqVROfQdOvF6fhCm7tIUDsiyPNL_5PJ8-Ql5x9pYzVr1LnClZF0wwvEqrQj8hM15Wsqi10U_JjLGaFbrWao-8SOmSMc6NLJ-TPSkY00JXM_L9FPzKhd4nOnb0bIy-D0CPwcVMv7rhCtLtzU_6Jccp0_lqjK0Deg6hRQqrk4BA7pcuQ0tdoo4uwHUD5NubHzsaqzO36YfBxWt6OiU_AD0Kuc_XB-RZ54YEL3fvPrn4eHQ-Py4Wnz-dzD8sCl9yngsvDJ5SgKw63pmmEdDIWviurnnDhWmF4hVozyTTsmm04ly1WqtScl12xsl98n6ru5maNbQeQo5usJvYr3EnO7re_t0J_couxytrmDJVpVDgcCcQx28TGrbrPnlASwHGKVkhS8YMghLRN_-gl-MUA9pDytQcdzN3gmJL-TimFKG7X4Yzexet3UZrMVr7O1qrcej1Yxv3I3-yREBugYStsIT48Pd_ZH8BHSqyQg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Ross, Colton J.</creator><creator>Laurence, Devin W.</creator><creator>Hsu, Ming-Chen</creator><creator>Baumwart, Ryan</creator><creator>Zhao, Yan D.</creator><creator>Mir, Arshid</creator><creator>Burkhart, Harold M.</creator><creator>Holzapfel, Gerhard A.</creator><creator>Wu, Yi</creator><creator>Lee, Chung-Hao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8019-3329</orcidid></search><sort><creationdate>20200501</creationdate><title>Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity</title><author>Ross, Colton J. ; Laurence, Devin W. ; Hsu, Ming-Chen ; Baumwart, Ryan ; Zhao, Yan D. ; Mir, Arshid ; Burkhart, Harold M. ; Holzapfel, Gerhard A. ; Wu, Yi ; Lee, Chung-Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-c2828252e37f1f8bb2eb392cf991b128d2417e6c03063bb64114d66453165f8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biomechanical Phenomena</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Biophysics</topic><topic>Blood flow</topic><topic>Cardiovascular diseases</topic><topic>Chordae Tendineae - physiology</topic><topic>Classical Mechanics</topic><topic>Computer applications</topic><topic>Coronary artery disease</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart valves</topic><topic>In vivo methods and tests</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanical tests</topic><topic>Mechanics (physics)</topic><topic>Mitral valve</topic><topic>Mitral Valve - physiology</topic><topic>Muscles</topic><topic>Original Article</topic><topic>Papillary Muscles - physiology</topic><topic>Rheumatic heart disease</topic><topic>Swine</topic><topic>Tricuspid valve</topic><topic>Tricuspid Valve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Colton J.</creatorcontrib><creatorcontrib>Laurence, Devin W.</creatorcontrib><creatorcontrib>Hsu, Ming-Chen</creatorcontrib><creatorcontrib>Baumwart, Ryan</creatorcontrib><creatorcontrib>Zhao, Yan D.</creatorcontrib><creatorcontrib>Mir, Arshid</creatorcontrib><creatorcontrib>Burkhart, Harold M.</creatorcontrib><creatorcontrib>Holzapfel, Gerhard A.</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Lee, Chung-Hao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Colton J.</au><au>Laurence, Devin W.</au><au>Hsu, Ming-Chen</au><au>Baumwart, Ryan</au><au>Zhao, Yan D.</au><au>Mir, Arshid</au><au>Burkhart, Harold M.</au><au>Holzapfel, Gerhard A.</au><au>Wu, Yi</au><au>Lee, Chung-Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity</atitle><jtitle>Annals of biomedical engineering</jtitle><stitle>Ann Biomed Eng</stitle><addtitle>Ann Biomed Eng</addtitle><date>2020-05-01</date><risdate>2020</risdate><volume>48</volume><issue>5</issue><spage>1463</spage><epage>1474</epage><pages>1463-1474</pages><issn>0090-6964</issn><issn>1573-9686</issn><eissn>1573-9686</eissn><abstract>Proper blood flow through the atrioventricular heart valves (AHVs) relies on the holistic function of the valve and subvalvular structures, and a failure of any component can lead to life-threatening heart disease. A comprehension of the mechanical characteristics of healthy valvular components is necessary for the refinement of heart valve computational models. In previous studies, the chordae tendineae have been mechanically characterized as individual structures, usually in a clamping-based approach, which may not accurately reflect the in vivo chordal interactions with the leaflet insertion and papillary muscles. In this study, we performed uniaxial mechanical testing of strut chordae tendineae of the AHVs under a unique tine-based leaflet–chordae–papillary muscle testing to observe the chordae mechanics while preserving the subvalvular component interactions. Results of this study provided insight to the disparity of chordae tissue stress-stretch responses between the mitral valve (MV) and the tricuspid valve (TV) under their respective emulated physiological loading. Specifically, strut chordae tendineae of the MV anterior leaflet had peak stretches of 1.09–1.16, while peak stretches of 1.08–1.11 were found for the TV anterior leaflet strut chordae. Constitutive parameters were also derived for the chordae tissue specimens using an Ogden model, which is useful for AHV computational model refinement. Results of this study are beneficial to the eventual improvement of treatment methods for valvular disease.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32006267</pmid><doi>10.1007/s10439-020-02464-6</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8019-3329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-6964
ispartof Annals of biomedical engineering, 2020-05, Vol.48 (5), p.1463-1474
issn 0090-6964
1573-9686
1573-9686
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048774
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Biochemistry
Biological and Medical Physics
Biomechanical Phenomena
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Blood flow
Cardiovascular diseases
Chordae Tendineae - physiology
Classical Mechanics
Computer applications
Coronary artery disease
Heart
Heart diseases
Heart valves
In vivo methods and tests
Mathematical models
Mechanical properties
Mechanical tests
Mechanics (physics)
Mitral valve
Mitral Valve - physiology
Muscles
Original Article
Papillary Muscles - physiology
Rheumatic heart disease
Swine
Tricuspid valve
Tricuspid Valve - physiology
title Mechanics of Porcine Heart Valves’ Strut Chordae Tendineae Investigated as a Leaflet–Chordae–Papillary Muscle Entity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanics%20of%20Porcine%20Heart%20Valves%E2%80%99%20Strut%20Chordae%20Tendineae%20Investigated%20as%20a%20Leaflet%E2%80%93Chordae%E2%80%93Papillary%20Muscle%20Entity&rft.jtitle=Annals%20of%20biomedical%20engineering&rft.au=Ross,%20Colton%20J.&rft.date=2020-05-01&rft.volume=48&rft.issue=5&rft.spage=1463&rft.epage=1474&rft.pages=1463-1474&rft.issn=0090-6964&rft.eissn=1573-9686&rft_id=info:doi/10.1007/s10439-020-02464-6&rft_dat=%3Cproquest_pubme%3E2389111484%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2389111484&rft_id=info:pmid/32006267&rfr_iscdi=true