Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank
Insulin‐like growth factor‐I (IGF‐I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full‐cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circ...
Gespeichert in:
Veröffentlicht in: | International journal of cancer 2021-05, Vol.148 (9), p.2274-2288 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2288 |
---|---|
container_issue | 9 |
container_start_page | 2274 |
container_title | International journal of cancer |
container_volume | 148 |
creator | Watts, Eleanor L. Fensom, Georgina K. Smith Byrne, Karl Perez‐Cornago, Aurora Allen, Naomi E. Knuppel, Anika Gunter, Marc J. Holmes, Michael V. Martin, Richard M. Murphy, Neil Tsilidis, Konstantinos K. Yeap, Bu B. Key, Timothy J. Travis, Ruth C. |
description | Insulin‐like growth factor‐I (IGF‐I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full‐cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circulating IGF‐I, sex hormone‐binding globulin (SHBG), and total and calculated free testosterone concentrations with prostate cancer incidence and mortality. For prospective analyses, risk was estimated using multivariable‐adjusted Cox regression in 199 698 male UK Biobank participants. Hazard ratios (HRs) were corrected for regression dilution bias using repeat hormone measurements from a subsample. Two‐sample Mendelian randomisation (MR) analysis of IGF‐I and risk used genetic instruments identified from UK Biobank men and genetic outcome data from the PRACTICAL consortium (79 148 cases and 61 106 controls). We used cis‐ and all (cis and trans) SNP MR approaches. A total of 5402 men were diagnosed with and 295 died from prostate cancer (mean follow‐up 6.9 years). Higher circulating IGF‐I was associated with elevated prostate cancer diagnosis (HR per 5 nmol/L increment = 1.09, 95% CI 1.05‐1.12) and mortality (HR per 5 nmol/L increment = 1.15, 1.02‐1.29). MR analyses also supported the role of IGF‐I in prostate cancer diagnosis (cis‐MR odds ratio per 5 nmol/L increment = 1.34, 1.07‐1.68). In observational analyses, higher free testosterone was associated with a higher risk of prostate cancer (HR per 50 pmol/L increment = 1.10, 1.05‐1.15). Higher SHBG was associated with a lower risk (HR per 10 nmol/L increment = 0.95, 0.94‐0.97), neither was associated with prostate cancer mortality. Total testosterone was not associated with prostate cancer. These findings implicate IGF‐I and free testosterone in prostate cancer development and/or progression.
What's new?
Testosterone, insulin‐like growth factor‐I (IGF‐I), and sex hormone‐binding globulin (SHBG) all have been associated with prostate‐cancer risk. In this large, prospective study, the authors analyzed how these circulating hormones might impact mortality as well as risk. They found that men with higher IGF‐I had a higher risk of both prostate‐cancer diagnosis and mortality. Men with higher free testosterone had an increased risk of prostate cancer, while men with higher SHBG had a decreased risk. These results support the roles of IGF‐I and testosterone in prostate cancer development. |
doi_str_mv | 10.1002/ijc.33416 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2465755490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4156-c4fe6ca50819b3e3be377adf93c6b146c0d0f0bb3d75339ccaee220ee7eb98d63</originalsourceid><addsrcrecordid>eNp1kT1PHDEQhq0oERyQIn8gcplIHIzX6_1oIpFTPi5Bogm15fXOHuZ89sX2BtHRpuM38ktiWEBJkWZGmvfRO6N5CXnD4IgBFMfmUh9xXrLqBZkxaOs5FEy8JLOswbxmvNolezFeAjAmoNwhu5wXomh4OyO3CxP0aFUybkWNi6M17u7m1po10lXwV-mCDkonH_JweUiTT8pS5Xo6BESaMCYfEwbvkGrvNLoUspd38QHahqyqlDWVtUCDieu8hRYAdze_AYBu0N0Pzr_Tj8Z3yq0PyKtB2YivH_s-Of_86cfi6_z07MtycXI61yUTVa4DVloJaFjbceQd8rpW_dByXXWsrDT0MEDX8b4WnLdaK8SiAMQau7bpK75PPky-27HbYD9dbuU2mI0K19IrI_9VnLmQK_9LNlA2ZcWywbtHg-B_jvkRcmOiRmuVQz9GWZSVqIUoW8jo-wnV-R8x4PC8hoG8T1DmBOVDgpl9-_ddz-RTZBk4noArY_H6_05y-W0xWf4Bp4qrSA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2465755490</pqid></control><display><type>article</type><title>Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Watts, Eleanor L. ; Fensom, Georgina K. ; Smith Byrne, Karl ; Perez‐Cornago, Aurora ; Allen, Naomi E. ; Knuppel, Anika ; Gunter, Marc J. ; Holmes, Michael V. ; Martin, Richard M. ; Murphy, Neil ; Tsilidis, Konstantinos K. ; Yeap, Bu B. ; Key, Timothy J. ; Travis, Ruth C.</creator><creatorcontrib>Watts, Eleanor L. ; Fensom, Georgina K. ; Smith Byrne, Karl ; Perez‐Cornago, Aurora ; Allen, Naomi E. ; Knuppel, Anika ; Gunter, Marc J. ; Holmes, Michael V. ; Martin, Richard M. ; Murphy, Neil ; Tsilidis, Konstantinos K. ; Yeap, Bu B. ; Key, Timothy J. ; Travis, Ruth C.</creatorcontrib><description>Insulin‐like growth factor‐I (IGF‐I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full‐cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circulating IGF‐I, sex hormone‐binding globulin (SHBG), and total and calculated free testosterone concentrations with prostate cancer incidence and mortality. For prospective analyses, risk was estimated using multivariable‐adjusted Cox regression in 199 698 male UK Biobank participants. Hazard ratios (HRs) were corrected for regression dilution bias using repeat hormone measurements from a subsample. Two‐sample Mendelian randomisation (MR) analysis of IGF‐I and risk used genetic instruments identified from UK Biobank men and genetic outcome data from the PRACTICAL consortium (79 148 cases and 61 106 controls). We used cis‐ and all (cis and trans) SNP MR approaches. A total of 5402 men were diagnosed with and 295 died from prostate cancer (mean follow‐up 6.9 years). Higher circulating IGF‐I was associated with elevated prostate cancer diagnosis (HR per 5 nmol/L increment = 1.09, 95% CI 1.05‐1.12) and mortality (HR per 5 nmol/L increment = 1.15, 1.02‐1.29). MR analyses also supported the role of IGF‐I in prostate cancer diagnosis (cis‐MR odds ratio per 5 nmol/L increment = 1.34, 1.07‐1.68). In observational analyses, higher free testosterone was associated with a higher risk of prostate cancer (HR per 50 pmol/L increment = 1.10, 1.05‐1.15). Higher SHBG was associated with a lower risk (HR per 10 nmol/L increment = 0.95, 0.94‐0.97), neither was associated with prostate cancer mortality. Total testosterone was not associated with prostate cancer. These findings implicate IGF‐I and free testosterone in prostate cancer development and/or progression.
What's new?
Testosterone, insulin‐like growth factor‐I (IGF‐I), and sex hormone‐binding globulin (SHBG) all have been associated with prostate‐cancer risk. In this large, prospective study, the authors analyzed how these circulating hormones might impact mortality as well as risk. They found that men with higher IGF‐I had a higher risk of both prostate‐cancer diagnosis and mortality. Men with higher free testosterone had an increased risk of prostate cancer, while men with higher SHBG had a decreased risk. These results support the roles of IGF‐I and testosterone in prostate cancer development.</description><identifier>ISSN: 0020-7136</identifier><identifier>ISSN: 1097-0215</identifier><identifier>EISSN: 1097-0215</identifier><identifier>DOI: 10.1002/ijc.33416</identifier><identifier>PMID: 33252839</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Aged ; Biological Specimen Banks ; Cancer Epidemiology ; Humans ; IGF‐I ; Insulin-Like Growth Factor I - metabolism ; Male ; Mendelian randomisation ; Mendelian Randomization Analysis - methods ; Middle Aged ; prospective analysis ; Prospective Studies ; prostate cancer ; Prostatic Neoplasms - blood ; testosterone ; Testosterone - blood ; United Kingdom</subject><ispartof>International journal of cancer, 2021-05, Vol.148 (9), p.2274-2288</ispartof><rights>2020 The Authors. published by John Wiley & Sons Ltd on behalf of UICC.</rights><rights>2020 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4156-c4fe6ca50819b3e3be377adf93c6b146c0d0f0bb3d75339ccaee220ee7eb98d63</citedby><cites>FETCH-LOGICAL-c4156-c4fe6ca50819b3e3be377adf93c6b146c0d0f0bb3d75339ccaee220ee7eb98d63</cites><orcidid>0000-0003-1049-4836 ; 0000-0001-6617-0879 ; 0000-0003-0979-4436 ; 0000-0001-9229-2589 ; 0000-0002-7992-7719 ; 0000-0003-3347-8249 ; 0000-0002-8452-8472 ; 0000-0002-5652-356X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fijc.33416$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fijc.33416$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33252839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watts, Eleanor L.</creatorcontrib><creatorcontrib>Fensom, Georgina K.</creatorcontrib><creatorcontrib>Smith Byrne, Karl</creatorcontrib><creatorcontrib>Perez‐Cornago, Aurora</creatorcontrib><creatorcontrib>Allen, Naomi E.</creatorcontrib><creatorcontrib>Knuppel, Anika</creatorcontrib><creatorcontrib>Gunter, Marc J.</creatorcontrib><creatorcontrib>Holmes, Michael V.</creatorcontrib><creatorcontrib>Martin, Richard M.</creatorcontrib><creatorcontrib>Murphy, Neil</creatorcontrib><creatorcontrib>Tsilidis, Konstantinos K.</creatorcontrib><creatorcontrib>Yeap, Bu B.</creatorcontrib><creatorcontrib>Key, Timothy J.</creatorcontrib><creatorcontrib>Travis, Ruth C.</creatorcontrib><title>Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank</title><title>International journal of cancer</title><addtitle>Int J Cancer</addtitle><description>Insulin‐like growth factor‐I (IGF‐I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full‐cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circulating IGF‐I, sex hormone‐binding globulin (SHBG), and total and calculated free testosterone concentrations with prostate cancer incidence and mortality. For prospective analyses, risk was estimated using multivariable‐adjusted Cox regression in 199 698 male UK Biobank participants. Hazard ratios (HRs) were corrected for regression dilution bias using repeat hormone measurements from a subsample. Two‐sample Mendelian randomisation (MR) analysis of IGF‐I and risk used genetic instruments identified from UK Biobank men and genetic outcome data from the PRACTICAL consortium (79 148 cases and 61 106 controls). We used cis‐ and all (cis and trans) SNP MR approaches. A total of 5402 men were diagnosed with and 295 died from prostate cancer (mean follow‐up 6.9 years). Higher circulating IGF‐I was associated with elevated prostate cancer diagnosis (HR per 5 nmol/L increment = 1.09, 95% CI 1.05‐1.12) and mortality (HR per 5 nmol/L increment = 1.15, 1.02‐1.29). MR analyses also supported the role of IGF‐I in prostate cancer diagnosis (cis‐MR odds ratio per 5 nmol/L increment = 1.34, 1.07‐1.68). In observational analyses, higher free testosterone was associated with a higher risk of prostate cancer (HR per 50 pmol/L increment = 1.10, 1.05‐1.15). Higher SHBG was associated with a lower risk (HR per 10 nmol/L increment = 0.95, 0.94‐0.97), neither was associated with prostate cancer mortality. Total testosterone was not associated with prostate cancer. These findings implicate IGF‐I and free testosterone in prostate cancer development and/or progression.
What's new?
Testosterone, insulin‐like growth factor‐I (IGF‐I), and sex hormone‐binding globulin (SHBG) all have been associated with prostate‐cancer risk. In this large, prospective study, the authors analyzed how these circulating hormones might impact mortality as well as risk. They found that men with higher IGF‐I had a higher risk of both prostate‐cancer diagnosis and mortality. Men with higher free testosterone had an increased risk of prostate cancer, while men with higher SHBG had a decreased risk. These results support the roles of IGF‐I and testosterone in prostate cancer development.</description><subject>Adult</subject><subject>Aged</subject><subject>Biological Specimen Banks</subject><subject>Cancer Epidemiology</subject><subject>Humans</subject><subject>IGF‐I</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Male</subject><subject>Mendelian randomisation</subject><subject>Mendelian Randomization Analysis - methods</subject><subject>Middle Aged</subject><subject>prospective analysis</subject><subject>Prospective Studies</subject><subject>prostate cancer</subject><subject>Prostatic Neoplasms - blood</subject><subject>testosterone</subject><subject>Testosterone - blood</subject><subject>United Kingdom</subject><issn>0020-7136</issn><issn>1097-0215</issn><issn>1097-0215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kT1PHDEQhq0oERyQIn8gcplIHIzX6_1oIpFTPi5Bogm15fXOHuZ89sX2BtHRpuM38ktiWEBJkWZGmvfRO6N5CXnD4IgBFMfmUh9xXrLqBZkxaOs5FEy8JLOswbxmvNolezFeAjAmoNwhu5wXomh4OyO3CxP0aFUybkWNi6M17u7m1po10lXwV-mCDkonH_JweUiTT8pS5Xo6BESaMCYfEwbvkGrvNLoUspd38QHahqyqlDWVtUCDieu8hRYAdze_AYBu0N0Pzr_Tj8Z3yq0PyKtB2YivH_s-Of_86cfi6_z07MtycXI61yUTVa4DVloJaFjbceQd8rpW_dByXXWsrDT0MEDX8b4WnLdaK8SiAMQau7bpK75PPky-27HbYD9dbuU2mI0K19IrI_9VnLmQK_9LNlA2ZcWywbtHg-B_jvkRcmOiRmuVQz9GWZSVqIUoW8jo-wnV-R8x4PC8hoG8T1DmBOVDgpl9-_ddz-RTZBk4noArY_H6_05y-W0xWf4Bp4qrSA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Watts, Eleanor L.</creator><creator>Fensom, Georgina K.</creator><creator>Smith Byrne, Karl</creator><creator>Perez‐Cornago, Aurora</creator><creator>Allen, Naomi E.</creator><creator>Knuppel, Anika</creator><creator>Gunter, Marc J.</creator><creator>Holmes, Michael V.</creator><creator>Martin, Richard M.</creator><creator>Murphy, Neil</creator><creator>Tsilidis, Konstantinos K.</creator><creator>Yeap, Bu B.</creator><creator>Key, Timothy J.</creator><creator>Travis, Ruth C.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1049-4836</orcidid><orcidid>https://orcid.org/0000-0001-6617-0879</orcidid><orcidid>https://orcid.org/0000-0003-0979-4436</orcidid><orcidid>https://orcid.org/0000-0001-9229-2589</orcidid><orcidid>https://orcid.org/0000-0002-7992-7719</orcidid><orcidid>https://orcid.org/0000-0003-3347-8249</orcidid><orcidid>https://orcid.org/0000-0002-8452-8472</orcidid><orcidid>https://orcid.org/0000-0002-5652-356X</orcidid></search><sort><creationdate>20210501</creationdate><title>Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank</title><author>Watts, Eleanor L. ; Fensom, Georgina K. ; Smith Byrne, Karl ; Perez‐Cornago, Aurora ; Allen, Naomi E. ; Knuppel, Anika ; Gunter, Marc J. ; Holmes, Michael V. ; Martin, Richard M. ; Murphy, Neil ; Tsilidis, Konstantinos K. ; Yeap, Bu B. ; Key, Timothy J. ; Travis, Ruth C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4156-c4fe6ca50819b3e3be377adf93c6b146c0d0f0bb3d75339ccaee220ee7eb98d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biological Specimen Banks</topic><topic>Cancer Epidemiology</topic><topic>Humans</topic><topic>IGF‐I</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Male</topic><topic>Mendelian randomisation</topic><topic>Mendelian Randomization Analysis - methods</topic><topic>Middle Aged</topic><topic>prospective analysis</topic><topic>Prospective Studies</topic><topic>prostate cancer</topic><topic>Prostatic Neoplasms - blood</topic><topic>testosterone</topic><topic>Testosterone - blood</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watts, Eleanor L.</creatorcontrib><creatorcontrib>Fensom, Georgina K.</creatorcontrib><creatorcontrib>Smith Byrne, Karl</creatorcontrib><creatorcontrib>Perez‐Cornago, Aurora</creatorcontrib><creatorcontrib>Allen, Naomi E.</creatorcontrib><creatorcontrib>Knuppel, Anika</creatorcontrib><creatorcontrib>Gunter, Marc J.</creatorcontrib><creatorcontrib>Holmes, Michael V.</creatorcontrib><creatorcontrib>Martin, Richard M.</creatorcontrib><creatorcontrib>Murphy, Neil</creatorcontrib><creatorcontrib>Tsilidis, Konstantinos K.</creatorcontrib><creatorcontrib>Yeap, Bu B.</creatorcontrib><creatorcontrib>Key, Timothy J.</creatorcontrib><creatorcontrib>Travis, Ruth C.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watts, Eleanor L.</au><au>Fensom, Georgina K.</au><au>Smith Byrne, Karl</au><au>Perez‐Cornago, Aurora</au><au>Allen, Naomi E.</au><au>Knuppel, Anika</au><au>Gunter, Marc J.</au><au>Holmes, Michael V.</au><au>Martin, Richard M.</au><au>Murphy, Neil</au><au>Tsilidis, Konstantinos K.</au><au>Yeap, Bu B.</au><au>Key, Timothy J.</au><au>Travis, Ruth C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank</atitle><jtitle>International journal of cancer</jtitle><addtitle>Int J Cancer</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>148</volume><issue>9</issue><spage>2274</spage><epage>2288</epage><pages>2274-2288</pages><issn>0020-7136</issn><issn>1097-0215</issn><eissn>1097-0215</eissn><abstract>Insulin‐like growth factor‐I (IGF‐I) and testosterone have been implicated in prostate cancer aetiology. Using data from a large prospective full‐cohort with standardised assays and repeat blood measurements, and genetic data from an international consortium, we investigated the associations of circulating IGF‐I, sex hormone‐binding globulin (SHBG), and total and calculated free testosterone concentrations with prostate cancer incidence and mortality. For prospective analyses, risk was estimated using multivariable‐adjusted Cox regression in 199 698 male UK Biobank participants. Hazard ratios (HRs) were corrected for regression dilution bias using repeat hormone measurements from a subsample. Two‐sample Mendelian randomisation (MR) analysis of IGF‐I and risk used genetic instruments identified from UK Biobank men and genetic outcome data from the PRACTICAL consortium (79 148 cases and 61 106 controls). We used cis‐ and all (cis and trans) SNP MR approaches. A total of 5402 men were diagnosed with and 295 died from prostate cancer (mean follow‐up 6.9 years). Higher circulating IGF‐I was associated with elevated prostate cancer diagnosis (HR per 5 nmol/L increment = 1.09, 95% CI 1.05‐1.12) and mortality (HR per 5 nmol/L increment = 1.15, 1.02‐1.29). MR analyses also supported the role of IGF‐I in prostate cancer diagnosis (cis‐MR odds ratio per 5 nmol/L increment = 1.34, 1.07‐1.68). In observational analyses, higher free testosterone was associated with a higher risk of prostate cancer (HR per 50 pmol/L increment = 1.10, 1.05‐1.15). Higher SHBG was associated with a lower risk (HR per 10 nmol/L increment = 0.95, 0.94‐0.97), neither was associated with prostate cancer mortality. Total testosterone was not associated with prostate cancer. These findings implicate IGF‐I and free testosterone in prostate cancer development and/or progression.
What's new?
Testosterone, insulin‐like growth factor‐I (IGF‐I), and sex hormone‐binding globulin (SHBG) all have been associated with prostate‐cancer risk. In this large, prospective study, the authors analyzed how these circulating hormones might impact mortality as well as risk. They found that men with higher IGF‐I had a higher risk of both prostate‐cancer diagnosis and mortality. Men with higher free testosterone had an increased risk of prostate cancer, while men with higher SHBG had a decreased risk. These results support the roles of IGF‐I and testosterone in prostate cancer development.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33252839</pmid><doi>10.1002/ijc.33416</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1049-4836</orcidid><orcidid>https://orcid.org/0000-0001-6617-0879</orcidid><orcidid>https://orcid.org/0000-0003-0979-4436</orcidid><orcidid>https://orcid.org/0000-0001-9229-2589</orcidid><orcidid>https://orcid.org/0000-0002-7992-7719</orcidid><orcidid>https://orcid.org/0000-0003-3347-8249</orcidid><orcidid>https://orcid.org/0000-0002-8452-8472</orcidid><orcidid>https://orcid.org/0000-0002-5652-356X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7136 |
ispartof | International journal of cancer, 2021-05, Vol.148 (9), p.2274-2288 |
issn | 0020-7136 1097-0215 1097-0215 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8048461 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult Aged Biological Specimen Banks Cancer Epidemiology Humans IGF‐I Insulin-Like Growth Factor I - metabolism Male Mendelian randomisation Mendelian Randomization Analysis - methods Middle Aged prospective analysis Prospective Studies prostate cancer Prostatic Neoplasms - blood testosterone Testosterone - blood United Kingdom |
title | Circulating insulin‐like growth factor‐I, total and free testosterone concentrations and prostate cancer risk in 200 000 men in UK Biobank |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circulating%20insulin%E2%80%90like%20growth%20factor%E2%80%90I,%20total%20and%20free%20testosterone%20concentrations%20and%20prostate%20cancer%20risk%20in%20200%E2%80%89000%20men%20in%20UK%20Biobank&rft.jtitle=International%20journal%20of%20cancer&rft.au=Watts,%20Eleanor%20L.&rft.date=2021-05-01&rft.volume=148&rft.issue=9&rft.spage=2274&rft.epage=2288&rft.pages=2274-2288&rft.issn=0020-7136&rft.eissn=1097-0215&rft_id=info:doi/10.1002/ijc.33416&rft_dat=%3Cproquest_pubme%3E2465755490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2465755490&rft_id=info:pmid/33252839&rfr_iscdi=true |