An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis

In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese medical sciences journal 2021-03, Vol.36 (1), p.66-71
Hauptverfasser: Li, Dasheng, Wang, Dawei, Wang, Nana, Xu, Haiwang, Huang, He, Dong, Jianping, Xia, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 66
container_title Chinese medical sciences journal
container_volume 36
creator Li, Dasheng
Wang, Dawei
Wang, Nana
Xu, Haiwang
Huang, He
Dong, Jianping
Xia, Chen
description In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.
doi_str_mv 10.24920/003788
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8041135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1001929421000249</els_id><sourcerecordid>2513247012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2888-acf48d1a1149ce9a74dd9b526d0cf84ac75554bd9005faab42cc3c4b9b80b09d3</originalsourceid><addsrcrecordid>eNplkcFuEzEQhi0EoqUg3gD5BpctY6-3a3NACgktkSIVocLV8tqziatdO9ibSr3z4JikVK16sq359HlmfkLeMjjlQnH4CFC3Uj4jxwyAVYor8fzB_Yi8yvkaAM6YFC_JUV3Lpm4ZOyZ_ZoEuQ_brzURjT6cN0nOf8kTncRx3wU-3pdyjndDR-eWv5aJiin43k8cwUR_oF_TXPqxpV7hxG9OeMxk_0R9xwH_KBeKWrtCkULhqlrPPe-iKLrxZh1jer8mL3gwZ39ydJ-Tn-der-bdqdXmxnM9WleVSysrYXkjHDGNCWVSmFc6pruFnDmwvhbFt0zSicwqg6Y3pBLe2tqJTnYQOlKtPyOeDd7vrRnS2zJDMoLfJjybd6mi8flwJfqPX8UZLEIzVTRF8uBOk-HuHedKjzxaHwQSMu6x5w2ouWmC8oO8PqE0x54T9_TcM9D4zfciskO8ednXP_Q-pAOwAYNnNjceksy37t-h8KsloF_0T6V9rLqGl</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513247012</pqid></control><display><type>article</type><title>An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Li, Dasheng ; Wang, Dawei ; Wang, Nana ; Xu, Haiwang ; Huang, He ; Dong, Jianping ; Xia, Chen</creator><creatorcontrib>Li, Dasheng ; Wang, Dawei ; Wang, Nana ; Xu, Haiwang ; Huang, He ; Dong, Jianping ; Xia, Chen ; 2北京推想科技有限公司先进研究院,北京 100025,中国 Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing 100025, China ; 1放射科,北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Radiology, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China ; 3感染科;北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Infection, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</creatorcontrib><description>In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.</description><identifier>ISSN: 1001-9294</identifier><identifier>EISSN: 1001-9294</identifier><identifier>DOI: 10.24920/003788</identifier><identifier>PMID: 33853711</identifier><language>eng</language><publisher>China: Elsevier B.V</publisher><subject>Adult ; Beijing ; Case Report ; Community-Acquired Infections - diagnostic imaging ; computed tomography ; coronavirus disease 2019 ; COVID-19 - diagnostic imaging ; COVID-19 Testing - methods ; Deep Learning ; diagnosis ; Humans ; imported cases ; Lung - diagnostic imaging ; Male ; Tomography, X-Ray Computed - methods</subject><ispartof>Chinese medical sciences journal, 2021-03, Vol.36 (1), p.66-71</ispartof><rights>2021 Chinese Academy Medical Sciences</rights><rights>Copyright © 2021 Chinese Academy Medical Sciences. Published by Elsevier B.V. All rights reserved. 2021 Chinese Academy Medical Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33853711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Dasheng</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Wang, Nana</creatorcontrib><creatorcontrib>Xu, Haiwang</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Dong, Jianping</creatorcontrib><creatorcontrib>Xia, Chen</creatorcontrib><creatorcontrib>2北京推想科技有限公司先进研究院,北京 100025,中国 Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing 100025, China</creatorcontrib><creatorcontrib>1放射科,北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Radiology, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</creatorcontrib><creatorcontrib>3感染科;北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Infection, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</creatorcontrib><title>An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis</title><title>Chinese medical sciences journal</title><addtitle>Chin Med Sci J</addtitle><description>In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.</description><subject>Adult</subject><subject>Beijing</subject><subject>Case Report</subject><subject>Community-Acquired Infections - diagnostic imaging</subject><subject>computed tomography</subject><subject>coronavirus disease 2019</subject><subject>COVID-19 - diagnostic imaging</subject><subject>COVID-19 Testing - methods</subject><subject>Deep Learning</subject><subject>diagnosis</subject><subject>Humans</subject><subject>imported cases</subject><subject>Lung - diagnostic imaging</subject><subject>Male</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1001-9294</issn><issn>1001-9294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkcFuEzEQhi0EoqUg3gD5BpctY6-3a3NACgktkSIVocLV8tqziatdO9ibSr3z4JikVK16sq359HlmfkLeMjjlQnH4CFC3Uj4jxwyAVYor8fzB_Yi8yvkaAM6YFC_JUV3Lpm4ZOyZ_ZoEuQ_brzURjT6cN0nOf8kTncRx3wU-3pdyjndDR-eWv5aJiin43k8cwUR_oF_TXPqxpV7hxG9OeMxk_0R9xwH_KBeKWrtCkULhqlrPPe-iKLrxZh1jer8mL3gwZ39ydJ-Tn-der-bdqdXmxnM9WleVSysrYXkjHDGNCWVSmFc6pruFnDmwvhbFt0zSicwqg6Y3pBLe2tqJTnYQOlKtPyOeDd7vrRnS2zJDMoLfJjybd6mi8flwJfqPX8UZLEIzVTRF8uBOk-HuHedKjzxaHwQSMu6x5w2ouWmC8oO8PqE0x54T9_TcM9D4zfciskO8ednXP_Q-pAOwAYNnNjceksy37t-h8KsloF_0T6V9rLqGl</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Li, Dasheng</creator><creator>Wang, Dawei</creator><creator>Wang, Nana</creator><creator>Xu, Haiwang</creator><creator>Huang, He</creator><creator>Dong, Jianping</creator><creator>Xia, Chen</creator><general>Elsevier B.V</general><general>Chinese Academy Medical Sciences. Published by Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210301</creationdate><title>An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis</title><author>Li, Dasheng ; Wang, Dawei ; Wang, Nana ; Xu, Haiwang ; Huang, He ; Dong, Jianping ; Xia, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2888-acf48d1a1149ce9a74dd9b526d0cf84ac75554bd9005faab42cc3c4b9b80b09d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Beijing</topic><topic>Case Report</topic><topic>Community-Acquired Infections - diagnostic imaging</topic><topic>computed tomography</topic><topic>coronavirus disease 2019</topic><topic>COVID-19 - diagnostic imaging</topic><topic>COVID-19 Testing - methods</topic><topic>Deep Learning</topic><topic>diagnosis</topic><topic>Humans</topic><topic>imported cases</topic><topic>Lung - diagnostic imaging</topic><topic>Male</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dasheng</creatorcontrib><creatorcontrib>Wang, Dawei</creatorcontrib><creatorcontrib>Wang, Nana</creatorcontrib><creatorcontrib>Xu, Haiwang</creatorcontrib><creatorcontrib>Huang, He</creatorcontrib><creatorcontrib>Dong, Jianping</creatorcontrib><creatorcontrib>Xia, Chen</creatorcontrib><creatorcontrib>2北京推想科技有限公司先进研究院,北京 100025,中国 Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing 100025, China</creatorcontrib><creatorcontrib>1放射科,北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Radiology, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</creatorcontrib><creatorcontrib>3感染科;北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Infection, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chinese medical sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dasheng</au><au>Wang, Dawei</au><au>Wang, Nana</au><au>Xu, Haiwang</au><au>Huang, He</au><au>Dong, Jianping</au><au>Xia, Chen</au><aucorp>2北京推想科技有限公司先进研究院,北京 100025,中国 Institute of Advanced Research, Infervision Medical Technology Co., Ltd., Beijing 100025, China</aucorp><aucorp>1放射科,北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Radiology, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</aucorp><aucorp>3感染科;北京大学第三医院北京海淀院区(北京海淀医院),北京100080,中国 Department of Infection, Beijing Haidian Section of Peking University Third Hospital (Beijing Haidian Hospital), Beijing 100080, China</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis</atitle><jtitle>Chinese medical sciences journal</jtitle><addtitle>Chin Med Sci J</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>36</volume><issue>1</issue><spage>66</spage><epage>71</epage><pages>66-71</pages><issn>1001-9294</issn><eissn>1001-9294</eissn><abstract>In the era of coronavirus disease 2019 (COVID-19) pandemic, imported COVID-19 cases pose great challenges to many countries. Chest CT examination is considered to be complementary to nucleic acid test for COVID-19 detection and diagnosis. We report the first community infected COVID-19 patient by an imported case in Beijing, which manifested as nodular lesions on chest CT imaging at the early stage. Deep Learning (DL)-based diagnostic systems quantitatively monitored the progress of pulmonary lesions in 6 days and timely made alert for suspected pneumonia, so that prompt medical isolation was taken. The patient was confirmed as COVID-19 case after nucleic acid test, for which the community transmission was prevented timely. The roles of DL-assisted diagnosis in helping radiologists screening suspected COVID cases were discussed.</abstract><cop>China</cop><pub>Elsevier B.V</pub><pmid>33853711</pmid><doi>10.24920/003788</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1001-9294
ispartof Chinese medical sciences journal, 2021-03, Vol.36 (1), p.66-71
issn 1001-9294
1001-9294
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8041135
source MEDLINE; Alma/SFX Local Collection
subjects Adult
Beijing
Case Report
Community-Acquired Infections - diagnostic imaging
computed tomography
coronavirus disease 2019
COVID-19 - diagnostic imaging
COVID-19 Testing - methods
Deep Learning
diagnosis
Humans
imported cases
Lung - diagnostic imaging
Male
Tomography, X-Ray Computed - methods
title An Insight of the First Community Infected COVID-19 Patient in Beijing by Imported Case: Role of Deep Learning-Assisted CT Diagnosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T14%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Insight%20of%20the%20First%20Community%20Infected%20COVID-19%20Patient%20in%20Beijing%20by%20Imported%20Case:%20Role%20of%20Deep%20Learning-Assisted%20CT%20Diagnosis&rft.jtitle=Chinese%20medical%20sciences%20journal&rft.au=Li,%20Dasheng&rft.aucorp=2%E5%8C%97%E4%BA%AC%E6%8E%A8%E6%83%B3%E7%A7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8%E5%85%88%E8%BF%9B%E7%A0%94%E7%A9%B6%E9%99%A2,%E5%8C%97%E4%BA%AC%20100025,%E4%B8%AD%E5%9B%BD%20Institute%20of%20Advanced%20Research,%20Infervision%20Medical%20Technology%20Co.,%20Ltd.,%20Beijing%20100025,%20China&rft.date=2021-03-01&rft.volume=36&rft.issue=1&rft.spage=66&rft.epage=71&rft.pages=66-71&rft.issn=1001-9294&rft.eissn=1001-9294&rft_id=info:doi/10.24920/003788&rft_dat=%3Cproquest_pubme%3E2513247012%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513247012&rft_id=info:pmid/33853711&rft_els_id=S1001929421000249&rfr_iscdi=true