MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism
Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in fu...
Gespeichert in:
Veröffentlicht in: | International journal of biological sciences 2021-01, Vol.17 (5), p.1203-1216 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1216 |
---|---|
container_issue | 5 |
container_start_page | 1203 |
container_title | International journal of biological sciences |
container_volume | 17 |
creator | Gao, Yucheng Zhu, Yueming Tran, Elizabeth L Tokars, Valerie Dean, Angela E Quan, Songhua Gius, David |
description | Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (
), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism.
expression in mouse embryo fibroblasts (MEFs) induced an
transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn
binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac. |
doi_str_mv | 10.7150/ijbs.51184 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515068008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS1E1ZbChh-ALLFBSLeM83CcTSVUoK10URfA2prYE-qrxL61HdT775vQh9quxjP-dObYh7H3Ao4bUcMXt-nScS2Eql6xQ1FV7aoolHr95HzA3qS0AShlrWCfHZSlko2q4JDFn_7X5Te-3iXniUvF0VDeDZhd8HwgtInnwI1L22XmOXrLbbgJceqcmftIyaWM3hC3Ey0sdhQj-sxHl4O5Ct5GhwMfKWMXBpfGt2yvxyHRu_t6xP78-P779Hy1vjy7OP26XpkKZF41BtoGOqobUyBYQRZBGNv0ZHosiRopRF0UvQCUpGTdUUcCVKEKUqpsVXnETu50t1M3kjXkc8RBb6MbMe50QKef33h3pf-Gf1pBBZVsZ4FP9wIxXE-Ush5dMjQM6ClMSRf1_PtSASy7Pr5AN2GKfn7eTM1e2krIeqY-31EmhpQi9Y9mBOglSr1Eqf9HOcMfntp_RB-yK28B666ckg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598394165</pqid></control><display><type>article</type><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>NCBI_PubMed Central(免费)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</creator><creatorcontrib>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</creatorcontrib><description>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (
), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism.
expression in mouse embryo fibroblasts (MEFs) induced an
transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn
binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</description><identifier>ISSN: 1449-2288</identifier><identifier>EISSN: 1449-2288</identifier><identifier>DOI: 10.7150/ijbs.51184</identifier><identifier>PMID: 33867840</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Acetylation ; Animals ; Antibodies ; Antineoplastic Agents - pharmacology ; Binding sites ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Cancer therapies ; Carcinogenesis - drug effects ; Carcinogenesis - metabolism ; Cell growth ; Cell Line, Tumor ; Cellular structure ; Charge distribution ; Cisplatin ; Cisplatin - pharmacology ; Detoxification ; Doxorubicin ; Doxorubicin - pharmacology ; Drug resistance ; Drug Resistance, Neoplasm ; Embryo fibroblasts ; Embryos ; Estrogen receptors ; Estrogens ; Fibroblasts ; Free Radical Scavengers - metabolism ; Genotype & phenotype ; Helices ; Humans ; Inactivation, Metabolic ; Lysine ; Mammalian cells ; Manganese ; MCF-7 Cells ; Metabolism ; Mice ; Microscopy ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Monomers ; Morphology ; Mutagenesis ; Peroxidase ; Phenotypes ; Physiology ; Post-translation ; Protein Processing, Post-Translational ; Proteins ; Research Paper ; Scavenging ; Sirtuins - metabolism ; Stop codon ; Structure-function relationships ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Surface charge ; Tumor cell lines ; Tumorigenesis ; Tumors</subject><ispartof>International journal of biological sciences, 2021-01, Vol.17 (5), p.1203-1216</ispartof><rights>The author(s).</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33867840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yucheng</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Tran, Elizabeth L</creatorcontrib><creatorcontrib>Tokars, Valerie</creatorcontrib><creatorcontrib>Dean, Angela E</creatorcontrib><creatorcontrib>Quan, Songhua</creatorcontrib><creatorcontrib>Gius, David</creatorcontrib><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><title>International journal of biological sciences</title><addtitle>Int J Biol Sci</addtitle><description>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (
), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism.
expression in mouse embryo fibroblasts (MEFs) induced an
transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn
binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Binding sites</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cancer therapies</subject><subject>Carcinogenesis - drug effects</subject><subject>Carcinogenesis - metabolism</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cellular structure</subject><subject>Charge distribution</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Detoxification</subject><subject>Doxorubicin</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Embryo fibroblasts</subject><subject>Embryos</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Fibroblasts</subject><subject>Free Radical Scavengers - metabolism</subject><subject>Genotype & phenotype</subject><subject>Helices</subject><subject>Humans</subject><subject>Inactivation, Metabolic</subject><subject>Lysine</subject><subject>Mammalian cells</subject><subject>Manganese</subject><subject>MCF-7 Cells</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Mutagenesis</subject><subject>Peroxidase</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Research Paper</subject><subject>Scavenging</subject><subject>Sirtuins - metabolism</subject><subject>Stop codon</subject><subject>Structure-function relationships</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Surface charge</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1449-2288</issn><issn>1449-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtv1TAQhS1E1ZbChh-ALLFBSLeM83CcTSVUoK10URfA2prYE-qrxL61HdT775vQh9quxjP-dObYh7H3Ao4bUcMXt-nScS2Eql6xQ1FV7aoolHr95HzA3qS0AShlrWCfHZSlko2q4JDFn_7X5Te-3iXniUvF0VDeDZhd8HwgtInnwI1L22XmOXrLbbgJceqcmftIyaWM3hC3Ey0sdhQj-sxHl4O5Ct5GhwMfKWMXBpfGt2yvxyHRu_t6xP78-P779Hy1vjy7OP26XpkKZF41BtoGOqobUyBYQRZBGNv0ZHosiRopRF0UvQCUpGTdUUcCVKEKUqpsVXnETu50t1M3kjXkc8RBb6MbMe50QKef33h3pf-Gf1pBBZVsZ4FP9wIxXE-Ush5dMjQM6ClMSRf1_PtSASy7Pr5AN2GKfn7eTM1e2krIeqY-31EmhpQi9Y9mBOglSr1Eqf9HOcMfntp_RB-yK28B666ckg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gao, Yucheng</creator><creator>Zhu, Yueming</creator><creator>Tran, Elizabeth L</creator><creator>Tokars, Valerie</creator><creator>Dean, Angela E</creator><creator>Quan, Songhua</creator><creator>Gius, David</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><author>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Binding sites</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cancer therapies</topic><topic>Carcinogenesis - drug effects</topic><topic>Carcinogenesis - metabolism</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cellular structure</topic><topic>Charge distribution</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Detoxification</topic><topic>Doxorubicin</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Embryo fibroblasts</topic><topic>Embryos</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Fibroblasts</topic><topic>Free Radical Scavengers - metabolism</topic><topic>Genotype & phenotype</topic><topic>Helices</topic><topic>Humans</topic><topic>Inactivation, Metabolic</topic><topic>Lysine</topic><topic>Mammalian cells</topic><topic>Manganese</topic><topic>MCF-7 Cells</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Mutagenesis</topic><topic>Peroxidase</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Research Paper</topic><topic>Scavenging</topic><topic>Sirtuins - metabolism</topic><topic>Stop codon</topic><topic>Structure-function relationships</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Surface charge</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yucheng</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Tran, Elizabeth L</creatorcontrib><creatorcontrib>Tokars, Valerie</creatorcontrib><creatorcontrib>Dean, Angela E</creatorcontrib><creatorcontrib>Quan, Songhua</creatorcontrib><creatorcontrib>Gius, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yucheng</au><au>Zhu, Yueming</au><au>Tran, Elizabeth L</au><au>Tokars, Valerie</au><au>Dean, Angela E</au><au>Quan, Songhua</au><au>Gius, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</atitle><jtitle>International journal of biological sciences</jtitle><addtitle>Int J Biol Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>1203</spage><epage>1216</epage><pages>1203-1216</pages><issn>1449-2288</issn><eissn>1449-2288</eissn><abstract>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene (
), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism.
expression in mouse embryo fibroblasts (MEFs) induced an
transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn
binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>33867840</pmid><doi>10.7150/ijbs.51184</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1449-2288 |
ispartof | International journal of biological sciences, 2021-01, Vol.17 (5), p.1203-1216 |
issn | 1449-2288 1449-2288 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040469 |
source | MEDLINE; PubMed Central Open Access; NCBI_PubMed Central(免费); EZB-FREE-00999 freely available EZB journals |
subjects | Acetylation Animals Antibodies Antineoplastic Agents - pharmacology Binding sites Breast cancer Breast Neoplasms - drug therapy Breast Neoplasms - metabolism Cancer therapies Carcinogenesis - drug effects Carcinogenesis - metabolism Cell growth Cell Line, Tumor Cellular structure Charge distribution Cisplatin Cisplatin - pharmacology Detoxification Doxorubicin Doxorubicin - pharmacology Drug resistance Drug Resistance, Neoplasm Embryo fibroblasts Embryos Estrogen receptors Estrogens Fibroblasts Free Radical Scavengers - metabolism Genotype & phenotype Helices Humans Inactivation, Metabolic Lysine Mammalian cells Manganese MCF-7 Cells Metabolism Mice Microscopy Mitochondria Mitochondria - drug effects Mitochondria - metabolism Monomers Morphology Mutagenesis Peroxidase Phenotypes Physiology Post-translation Protein Processing, Post-Translational Proteins Research Paper Scavenging Sirtuins - metabolism Stop codon Structure-function relationships Superoxide dismutase Superoxide Dismutase - metabolism Surface charge Tumor cell lines Tumorigenesis Tumors |
title | MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnSOD%20Lysine%2068%20acetylation%20leads%20to%20cisplatin%20and%20doxorubicin%20resistance%20due%20to%20aberrant%20mitochondrial%20metabolism&rft.jtitle=International%20journal%20of%20biological%20sciences&rft.au=Gao,%20Yucheng&rft.date=2021-01-01&rft.volume=17&rft.issue=5&rft.spage=1203&rft.epage=1216&rft.pages=1203-1216&rft.issn=1449-2288&rft.eissn=1449-2288&rft_id=info:doi/10.7150/ijbs.51184&rft_dat=%3Cproquest_pubme%3E2515068008%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598394165&rft_id=info:pmid/33867840&rfr_iscdi=true |