MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism

Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological sciences 2021-01, Vol.17 (5), p.1203-1216
Hauptverfasser: Gao, Yucheng, Zhu, Yueming, Tran, Elizabeth L, Tokars, Valerie, Dean, Angela E, Quan, Songhua, Gius, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1216
container_issue 5
container_start_page 1203
container_title International journal of biological sciences
container_volume 17
creator Gao, Yucheng
Zhu, Yueming
Tran, Elizabeth L
Tokars, Valerie
Dean, Angela E
Quan, Songhua
Gius, David
description Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene ( ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. expression in mouse embryo fibroblasts (MEFs) induced an transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.
doi_str_mv 10.7150/ijbs.51184
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2515068008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</originalsourceid><addsrcrecordid>eNpdkUtv1TAQhS1E1ZbChh-ALLFBSLeM83CcTSVUoK10URfA2prYE-qrxL61HdT775vQh9quxjP-dObYh7H3Ao4bUcMXt-nScS2Eql6xQ1FV7aoolHr95HzA3qS0AShlrWCfHZSlko2q4JDFn_7X5Te-3iXniUvF0VDeDZhd8HwgtInnwI1L22XmOXrLbbgJceqcmftIyaWM3hC3Ey0sdhQj-sxHl4O5Ct5GhwMfKWMXBpfGt2yvxyHRu_t6xP78-P779Hy1vjy7OP26XpkKZF41BtoGOqobUyBYQRZBGNv0ZHosiRopRF0UvQCUpGTdUUcCVKEKUqpsVXnETu50t1M3kjXkc8RBb6MbMe50QKef33h3pf-Gf1pBBZVsZ4FP9wIxXE-Ush5dMjQM6ClMSRf1_PtSASy7Pr5AN2GKfn7eTM1e2krIeqY-31EmhpQi9Y9mBOglSr1Eqf9HOcMfntp_RB-yK28B666ckg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598394165</pqid></control><display><type>article</type><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>NCBI_PubMed Central(免费)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</creator><creatorcontrib>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</creatorcontrib><description>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene ( ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. expression in mouse embryo fibroblasts (MEFs) induced an transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</description><identifier>ISSN: 1449-2288</identifier><identifier>EISSN: 1449-2288</identifier><identifier>DOI: 10.7150/ijbs.51184</identifier><identifier>PMID: 33867840</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Acetylation ; Animals ; Antibodies ; Antineoplastic Agents - pharmacology ; Binding sites ; Breast cancer ; Breast Neoplasms - drug therapy ; Breast Neoplasms - metabolism ; Cancer therapies ; Carcinogenesis - drug effects ; Carcinogenesis - metabolism ; Cell growth ; Cell Line, Tumor ; Cellular structure ; Charge distribution ; Cisplatin ; Cisplatin - pharmacology ; Detoxification ; Doxorubicin ; Doxorubicin - pharmacology ; Drug resistance ; Drug Resistance, Neoplasm ; Embryo fibroblasts ; Embryos ; Estrogen receptors ; Estrogens ; Fibroblasts ; Free Radical Scavengers - metabolism ; Genotype &amp; phenotype ; Helices ; Humans ; Inactivation, Metabolic ; Lysine ; Mammalian cells ; Manganese ; MCF-7 Cells ; Metabolism ; Mice ; Microscopy ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - metabolism ; Monomers ; Morphology ; Mutagenesis ; Peroxidase ; Phenotypes ; Physiology ; Post-translation ; Protein Processing, Post-Translational ; Proteins ; Research Paper ; Scavenging ; Sirtuins - metabolism ; Stop codon ; Structure-function relationships ; Superoxide dismutase ; Superoxide Dismutase - metabolism ; Surface charge ; Tumor cell lines ; Tumorigenesis ; Tumors</subject><ispartof>International journal of biological sciences, 2021-01, Vol.17 (5), p.1203-1216</ispartof><rights>The author(s).</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040469/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040469/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33867840$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yucheng</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Tran, Elizabeth L</creatorcontrib><creatorcontrib>Tokars, Valerie</creatorcontrib><creatorcontrib>Dean, Angela E</creatorcontrib><creatorcontrib>Quan, Songhua</creatorcontrib><creatorcontrib>Gius, David</creatorcontrib><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><title>International journal of biological sciences</title><addtitle>Int J Biol Sci</addtitle><description>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene ( ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. expression in mouse embryo fibroblasts (MEFs) induced an transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</description><subject>Acetylation</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Binding sites</subject><subject>Breast cancer</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - metabolism</subject><subject>Cancer therapies</subject><subject>Carcinogenesis - drug effects</subject><subject>Carcinogenesis - metabolism</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cellular structure</subject><subject>Charge distribution</subject><subject>Cisplatin</subject><subject>Cisplatin - pharmacology</subject><subject>Detoxification</subject><subject>Doxorubicin</subject><subject>Doxorubicin - pharmacology</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Embryo fibroblasts</subject><subject>Embryos</subject><subject>Estrogen receptors</subject><subject>Estrogens</subject><subject>Fibroblasts</subject><subject>Free Radical Scavengers - metabolism</subject><subject>Genotype &amp; phenotype</subject><subject>Helices</subject><subject>Humans</subject><subject>Inactivation, Metabolic</subject><subject>Lysine</subject><subject>Mammalian cells</subject><subject>Manganese</subject><subject>MCF-7 Cells</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Microscopy</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Monomers</subject><subject>Morphology</subject><subject>Mutagenesis</subject><subject>Peroxidase</subject><subject>Phenotypes</subject><subject>Physiology</subject><subject>Post-translation</subject><subject>Protein Processing, Post-Translational</subject><subject>Proteins</subject><subject>Research Paper</subject><subject>Scavenging</subject><subject>Sirtuins - metabolism</subject><subject>Stop codon</subject><subject>Structure-function relationships</subject><subject>Superoxide dismutase</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Surface charge</subject><subject>Tumor cell lines</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1449-2288</issn><issn>1449-2288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtv1TAQhS1E1ZbChh-ALLFBSLeM83CcTSVUoK10URfA2prYE-qrxL61HdT775vQh9quxjP-dObYh7H3Ao4bUcMXt-nScS2Eql6xQ1FV7aoolHr95HzA3qS0AShlrWCfHZSlko2q4JDFn_7X5Te-3iXniUvF0VDeDZhd8HwgtInnwI1L22XmOXrLbbgJceqcmftIyaWM3hC3Ey0sdhQj-sxHl4O5Ct5GhwMfKWMXBpfGt2yvxyHRu_t6xP78-P779Hy1vjy7OP26XpkKZF41BtoGOqobUyBYQRZBGNv0ZHosiRopRF0UvQCUpGTdUUcCVKEKUqpsVXnETu50t1M3kjXkc8RBb6MbMe50QKef33h3pf-Gf1pBBZVsZ4FP9wIxXE-Ush5dMjQM6ClMSRf1_PtSASy7Pr5AN2GKfn7eTM1e2krIeqY-31EmhpQi9Y9mBOglSr1Eqf9HOcMfntp_RB-yK28B666ckg</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Gao, Yucheng</creator><creator>Zhu, Yueming</creator><creator>Tran, Elizabeth L</creator><creator>Tokars, Valerie</creator><creator>Dean, Angela E</creator><creator>Quan, Songhua</creator><creator>Gius, David</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</title><author>Gao, Yucheng ; Zhu, Yueming ; Tran, Elizabeth L ; Tokars, Valerie ; Dean, Angela E ; Quan, Songhua ; Gius, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-7c0970be57c2a0d1eda01cd7fecfa3ee7611522f10a6e865bebe108282e883983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acetylation</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Binding sites</topic><topic>Breast cancer</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - metabolism</topic><topic>Cancer therapies</topic><topic>Carcinogenesis - drug effects</topic><topic>Carcinogenesis - metabolism</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cellular structure</topic><topic>Charge distribution</topic><topic>Cisplatin</topic><topic>Cisplatin - pharmacology</topic><topic>Detoxification</topic><topic>Doxorubicin</topic><topic>Doxorubicin - pharmacology</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Embryo fibroblasts</topic><topic>Embryos</topic><topic>Estrogen receptors</topic><topic>Estrogens</topic><topic>Fibroblasts</topic><topic>Free Radical Scavengers - metabolism</topic><topic>Genotype &amp; phenotype</topic><topic>Helices</topic><topic>Humans</topic><topic>Inactivation, Metabolic</topic><topic>Lysine</topic><topic>Mammalian cells</topic><topic>Manganese</topic><topic>MCF-7 Cells</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Microscopy</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Monomers</topic><topic>Morphology</topic><topic>Mutagenesis</topic><topic>Peroxidase</topic><topic>Phenotypes</topic><topic>Physiology</topic><topic>Post-translation</topic><topic>Protein Processing, Post-Translational</topic><topic>Proteins</topic><topic>Research Paper</topic><topic>Scavenging</topic><topic>Sirtuins - metabolism</topic><topic>Stop codon</topic><topic>Structure-function relationships</topic><topic>Superoxide dismutase</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Surface charge</topic><topic>Tumor cell lines</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yucheng</creatorcontrib><creatorcontrib>Zhu, Yueming</creatorcontrib><creatorcontrib>Tran, Elizabeth L</creatorcontrib><creatorcontrib>Tokars, Valerie</creatorcontrib><creatorcontrib>Dean, Angela E</creatorcontrib><creatorcontrib>Quan, Songhua</creatorcontrib><creatorcontrib>Gius, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of biological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yucheng</au><au>Zhu, Yueming</au><au>Tran, Elizabeth L</au><au>Tokars, Valerie</au><au>Dean, Angela E</au><au>Quan, Songhua</au><au>Gius, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism</atitle><jtitle>International journal of biological sciences</jtitle><addtitle>Int J Biol Sci</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>1203</spage><epage>1216</epage><pages>1203-1216</pages><issn>1449-2288</issn><eissn>1449-2288</eissn><abstract>Manganese superoxide dismutase (MnSOD) acetylation (Ac) has been shown to be a key post-translational modification important in the regulation of detoxification activity in various disease models. We have previously demonstrated that MnSOD lysine-68 (K68) acetylation (K68-Ac) leads to a change in function from a superoxide-scavenging homotetramer to a peroxidase-directed monomer. Here, we found that estrogen receptor positive (ER+) breast cancer cell lines (MCF7 and T47D), selected for continuous growth in cisplatin (CDDP) and doxorubicin (DXR), exhibited an increase in MnSOD-K68-Ac. In addition, MnSOD-K68-Ac, as modeled by the expression of a validated acetylation mimic mutant gene ( ), also led to therapy resistance to CDDP and DXR, altered mitochondrial structure and morphology, and aberrant cellular metabolism. expression in mouse embryo fibroblasts (MEFs) induced an transformation permissive phenotype. Computerized molecular protein dynamics analysis of both MnSOD-K68-Ac and MnSOD-K68Q exhibited a significant change in charge distribution along the α1 and α2 helices, directly adjacent to the Mn binding site, implying that this decrease in surface charge destabilizes tetrameric MnSOD, leading to an enrichment of the monomer. Finally, monomeric MnSOD, as modeled by amber codon substitution to generate MnSOD-K68-Ac or MnSOD-K68Q expression in mammalian cells, appeared to incorporate Fe to maximally induce its peroxidase activity. In summary, these findings may explain the mechanism behind the observed structural and functional change of MnSOD-K68-Ac.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>33867840</pmid><doi>10.7150/ijbs.51184</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1449-2288
ispartof International journal of biological sciences, 2021-01, Vol.17 (5), p.1203-1216
issn 1449-2288
1449-2288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8040469
source MEDLINE; PubMed Central Open Access; NCBI_PubMed Central(免费); EZB-FREE-00999 freely available EZB journals
subjects Acetylation
Animals
Antibodies
Antineoplastic Agents - pharmacology
Binding sites
Breast cancer
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Cancer therapies
Carcinogenesis - drug effects
Carcinogenesis - metabolism
Cell growth
Cell Line, Tumor
Cellular structure
Charge distribution
Cisplatin
Cisplatin - pharmacology
Detoxification
Doxorubicin
Doxorubicin - pharmacology
Drug resistance
Drug Resistance, Neoplasm
Embryo fibroblasts
Embryos
Estrogen receptors
Estrogens
Fibroblasts
Free Radical Scavengers - metabolism
Genotype & phenotype
Helices
Humans
Inactivation, Metabolic
Lysine
Mammalian cells
Manganese
MCF-7 Cells
Metabolism
Mice
Microscopy
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
Monomers
Morphology
Mutagenesis
Peroxidase
Phenotypes
Physiology
Post-translation
Protein Processing, Post-Translational
Proteins
Research Paper
Scavenging
Sirtuins - metabolism
Stop codon
Structure-function relationships
Superoxide dismutase
Superoxide Dismutase - metabolism
Surface charge
Tumor cell lines
Tumorigenesis
Tumors
title MnSOD Lysine 68 acetylation leads to cisplatin and doxorubicin resistance due to aberrant mitochondrial metabolism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MnSOD%20Lysine%2068%20acetylation%20leads%20to%20cisplatin%20and%20doxorubicin%20resistance%20due%20to%20aberrant%20mitochondrial%20metabolism&rft.jtitle=International%20journal%20of%20biological%20sciences&rft.au=Gao,%20Yucheng&rft.date=2021-01-01&rft.volume=17&rft.issue=5&rft.spage=1203&rft.epage=1216&rft.pages=1203-1216&rft.issn=1449-2288&rft.eissn=1449-2288&rft_id=info:doi/10.7150/ijbs.51184&rft_dat=%3Cproquest_pubme%3E2515068008%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598394165&rft_id=info:pmid/33867840&rfr_iscdi=true