A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing

Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2021-03, Vol.14 (7), p.1689
Hauptverfasser: Han, Xi, Jiang, Dongjie, Qu, Xuecheng, Bai, Yuan, Cao, Yu, Luo, Ruizeng, Li, Zhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1689
container_title Materials
container_volume 14
creator Han, Xi
Jiang, Dongjie
Qu, Xuecheng
Bai, Yuan
Cao, Yu
Luo, Ruizeng
Li, Zhou
description Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge ( ), open-circuit voltage ( ), and short-circuit current ( ) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.
doi_str_mv 10.3390/ma14071689
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508589502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-44641f715d4b2b45a2f81a28d699e38eb958ee0a7d5bda8e3ce7b6d9bf2423f3</originalsourceid><addsrcrecordid>eNpdkV9rFTEQxYMottS--AEk4IsUV_N_kxehlKu3UPTh3veQZGdvU_cmNdkt9Nub2lpr5yWTOT8OMxyE3lLyiXNDPu8dFaSnSpsX6JAaozpqhHj5pD9Ax7VekVacU83Ma3TAuSaaGnmIllO8mQvM4dL5CT7iDUxjtwY33X3xtkSfYYIwlxjwd5fyDhIUN-eCXcWrP0pOTdv8jAmPbbxq-u4Wr125gTrHtMMuDXjrwhyb4QZSbbM36NXopgrHD-8R2n5dbc_W3cWPb-dnpxddEETNnRBK0LGnchCeeSEdGzV1TA_KGOAavJEagLh-kH5wGniA3qvB-JEJxkd-hL7c214vfg9DgDQXN9nrEveu3Nrsov1fSfHS7vKN1YQryVQz-PBgUPKvpd1j97EGmCaXIC_VMkm01EYS1tD3z9CrvJTUrmuU0D2lSvFGndxToeRaC4yPy1Bi7_K0__Js8Lun6z-if9PjvwHELJxh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548711663</pqid></control><display><type>article</type><title>A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Han, Xi ; Jiang, Dongjie ; Qu, Xuecheng ; Bai, Yuan ; Cao, Yu ; Luo, Ruizeng ; Li, Zhou</creator><creatorcontrib>Han, Xi ; Jiang, Dongjie ; Qu, Xuecheng ; Bai, Yuan ; Cao, Yu ; Luo, Ruizeng ; Li, Zhou</creatorcontrib><description>Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge ( ), open-circuit voltage ( ), and short-circuit current ( ) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma14071689</identifier><identifier>PMID: 33808195</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biocompatibility ; Biomechanics ; Charge transfer ; Circuits ; Electrodes ; Elongation ; Energy ; Energy harvesting ; Formability ; Hydrogels ; Light emitting diodes ; Materials selection ; Mechanical properties ; Nanogenerators ; Open circuit voltage ; Robotics ; Sensors ; Short circuit currents ; Skin ; Tactile sensors (robotics)</subject><ispartof>Materials, 2021-03, Vol.14 (7), p.1689</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-44641f715d4b2b45a2f81a28d699e38eb958ee0a7d5bda8e3ce7b6d9bf2423f3</citedby><cites>FETCH-LOGICAL-c406t-44641f715d4b2b45a2f81a28d699e38eb958ee0a7d5bda8e3ce7b6d9bf2423f3</cites><orcidid>0000-0003-2109-5566 ; 0000-0002-9952-7296 ; 0000-0003-1380-6663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036526/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8036526/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33808195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Xi</creatorcontrib><creatorcontrib>Jiang, Dongjie</creatorcontrib><creatorcontrib>Qu, Xuecheng</creatorcontrib><creatorcontrib>Bai, Yuan</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Luo, Ruizeng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><title>A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge ( ), open-circuit voltage ( ), and short-circuit current ( ) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.</description><subject>Biocompatibility</subject><subject>Biomechanics</subject><subject>Charge transfer</subject><subject>Circuits</subject><subject>Electrodes</subject><subject>Elongation</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Formability</subject><subject>Hydrogels</subject><subject>Light emitting diodes</subject><subject>Materials selection</subject><subject>Mechanical properties</subject><subject>Nanogenerators</subject><subject>Open circuit voltage</subject><subject>Robotics</subject><subject>Sensors</subject><subject>Short circuit currents</subject><subject>Skin</subject><subject>Tactile sensors (robotics)</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV9rFTEQxYMottS--AEk4IsUV_N_kxehlKu3UPTh3veQZGdvU_cmNdkt9Nub2lpr5yWTOT8OMxyE3lLyiXNDPu8dFaSnSpsX6JAaozpqhHj5pD9Ax7VekVacU83Ma3TAuSaaGnmIllO8mQvM4dL5CT7iDUxjtwY33X3xtkSfYYIwlxjwd5fyDhIUN-eCXcWrP0pOTdv8jAmPbbxq-u4Wr125gTrHtMMuDXjrwhyb4QZSbbM36NXopgrHD-8R2n5dbc_W3cWPb-dnpxddEETNnRBK0LGnchCeeSEdGzV1TA_KGOAavJEagLh-kH5wGniA3qvB-JEJxkd-hL7c214vfg9DgDQXN9nrEveu3Nrsov1fSfHS7vKN1YQryVQz-PBgUPKvpd1j97EGmCaXIC_VMkm01EYS1tD3z9CrvJTUrmuU0D2lSvFGndxToeRaC4yPy1Bi7_K0__Js8Lun6z-if9PjvwHELJxh</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Han, Xi</creator><creator>Jiang, Dongjie</creator><creator>Qu, Xuecheng</creator><creator>Bai, Yuan</creator><creator>Cao, Yu</creator><creator>Luo, Ruizeng</creator><creator>Li, Zhou</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2109-5566</orcidid><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid><orcidid>https://orcid.org/0000-0003-1380-6663</orcidid></search><sort><creationdate>20210330</creationdate><title>A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing</title><author>Han, Xi ; Jiang, Dongjie ; Qu, Xuecheng ; Bai, Yuan ; Cao, Yu ; Luo, Ruizeng ; Li, Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-44641f715d4b2b45a2f81a28d699e38eb958ee0a7d5bda8e3ce7b6d9bf2423f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biocompatibility</topic><topic>Biomechanics</topic><topic>Charge transfer</topic><topic>Circuits</topic><topic>Electrodes</topic><topic>Elongation</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Formability</topic><topic>Hydrogels</topic><topic>Light emitting diodes</topic><topic>Materials selection</topic><topic>Mechanical properties</topic><topic>Nanogenerators</topic><topic>Open circuit voltage</topic><topic>Robotics</topic><topic>Sensors</topic><topic>Short circuit currents</topic><topic>Skin</topic><topic>Tactile sensors (robotics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Xi</creatorcontrib><creatorcontrib>Jiang, Dongjie</creatorcontrib><creatorcontrib>Qu, Xuecheng</creatorcontrib><creatorcontrib>Bai, Yuan</creatorcontrib><creatorcontrib>Cao, Yu</creatorcontrib><creatorcontrib>Luo, Ruizeng</creatorcontrib><creatorcontrib>Li, Zhou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Xi</au><au>Jiang, Dongjie</au><au>Qu, Xuecheng</au><au>Bai, Yuan</au><au>Cao, Yu</au><au>Luo, Ruizeng</au><au>Li, Zhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2021-03-30</date><risdate>2021</risdate><volume>14</volume><issue>7</issue><spage>1689</spage><pages>1689-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Electronic skin that is deformable, self-healable, and self-powered has high competitiveness for next-generation energy/sense/robotic applications. Herein, we fabricated a stretchable, self-healable triboelectric nanogenerator (SH-TENG) as electronic skin for energy harvesting and tactile sensing. The elongation of SH-TENG can achieve 800% (uniaxial strain) and the SH-TENG can self-heal within 2.5 min. The SH-TENG is based on the single-electrode mode, which is constructed from ion hydrogels with an area of 2 cm × 3 cm, the output of short-circuit transferred charge ( ), open-circuit voltage ( ), and short-circuit current ( ) reaches ~6 nC, ~22 V, and ~400 nA, and the corresponding output power density is ~2.9 μW × cm when the matching resistance was ~140 MΩ. As a biomechanical energy harvesting device, the SH-TENG also can drive red light-emitting diodes (LEDs) bulbs. Meanwhile, SH-TENG has shown good sensitivity to low-frequency human touch and can be used as an artificial electronic skin for touch/pressure sensing. This work provides a suitable candidate for the material selection of the hydrogel-based self-powered electronic skin.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33808195</pmid><doi>10.3390/ma14071689</doi><orcidid>https://orcid.org/0000-0003-2109-5566</orcidid><orcidid>https://orcid.org/0000-0002-9952-7296</orcidid><orcidid>https://orcid.org/0000-0003-1380-6663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2021-03, Vol.14 (7), p.1689
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036526
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Biocompatibility
Biomechanics
Charge transfer
Circuits
Electrodes
Elongation
Energy
Energy harvesting
Formability
Hydrogels
Light emitting diodes
Materials selection
Mechanical properties
Nanogenerators
Open circuit voltage
Robotics
Sensors
Short circuit currents
Skin
Tactile sensors (robotics)
title A Stretchable, Self-Healable Triboelectric Nanogenerator as Electronic Skin for Energy Harvesting and Tactile Sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stretchable,%20Self-Healable%20Triboelectric%20Nanogenerator%20as%20Electronic%20Skin%20for%20Energy%20Harvesting%20and%20Tactile%20Sensing&rft.jtitle=Materials&rft.au=Han,%20Xi&rft.date=2021-03-30&rft.volume=14&rft.issue=7&rft.spage=1689&rft.pages=1689-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma14071689&rft_dat=%3Cproquest_pubme%3E2508589502%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548711663&rft_id=info:pmid/33808195&rfr_iscdi=true