A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data

Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain Structure and Function 2021-05, Vol.226 (4), p.1155-1167
Hauptverfasser: Trutti, Anne C., Fontanesi, Laura, Mulder, Martijn J., Bazin, Pierre-Louis, Hommel, Bernhard, Forstmann, Birte U.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1167
container_issue 4
container_start_page 1155
container_title Brain Structure and Function
container_volume 226
creator Trutti, Anne C.
Fontanesi, Laura
Mulder, Martijn J.
Bazin, Pierre-Louis
Hommel, Bernhard
Forstmann, Birte U.
description Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.
doi_str_mv 10.1007/s00429-021-02231-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510636124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtSpQPxb-QA_IEpf2EBjbcRJfKq0qCpVaVUILBy7WOPbupkrixU5a8W_6W_hleEnZQg8cLD9p3ryZeY-QYwbvGED5PgLkXGXAWXpcsOx-jxyyqhAZLwr2YoelOCBHMd4CSFUxtU8OhJAVCA6H5NucboI3aJq2iUNTUxxajNQv6bB2dD122NM71w8BWzq4VZdgQhgc0pOvi_kpNRidpb6n5c-HhYst0uvPl9TigK_IyyW20b1-_Gfky8WHxfmn7Orm4-X5_CqrZQ5DlkvLwNrCKSFrI5FJxXOL3NSGsUIBVMwIp6qccaysYEXNS6OUtcsSeFlJMSNnk-5mNJ2z9bSt3oSmw_BDe2z0v5W-WeuVv9PJgmJr0YycPAoE_310cdBdE2vXttg7P0bN80olR0W-nfX2GfXWj6FP52kuGRRJkOeJxSdWHXyMwS13yzDQ2-j0FJ1O0enf0en71PTm7zN2LX-ySgQxEWIq9SsXnmb_R_YXKDqjsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510636124</pqid></control><display><type>article</type><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><source>Springer Nature - Complete Springer Journals</source><creator>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</creator><creatorcontrib>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-021-02231-w</identifier><identifier>PMID: 33580320</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anatomy ; Biomedical and Life Sciences ; Biomedicine ; Brain architecture ; Brain mapping ; Cell Biology ; Cognitive ability ; Functional magnetic resonance imaging ; Image processing ; Magnetic resonance imaging ; Nervous system ; Neuroimaging ; Neurology ; Neurosciences ; Original ; Original Article ; Reinforcement ; Ventral tegmentum</subject><ispartof>Brain Structure and Function, 2021-05, Vol.226 (4), p.1155-1167</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</citedby><cites>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</cites><orcidid>0000-0002-0044-4846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-021-02231-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-021-02231-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trutti, Anne C.</creatorcontrib><creatorcontrib>Fontanesi, Laura</creatorcontrib><creatorcontrib>Mulder, Martijn J.</creatorcontrib><creatorcontrib>Bazin, Pierre-Louis</creatorcontrib><creatorcontrib>Hommel, Bernhard</creatorcontrib><creatorcontrib>Forstmann, Birte U.</creatorcontrib><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</description><subject>Anatomy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Cell Biology</subject><subject>Cognitive ability</subject><subject>Functional magnetic resonance imaging</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Reinforcement</subject><subject>Ventral tegmentum</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAQtSpQPxb-QA_IEpf2EBjbcRJfKq0qCpVaVUILBy7WOPbupkrixU5a8W_6W_hleEnZQg8cLD9p3ryZeY-QYwbvGED5PgLkXGXAWXpcsOx-jxyyqhAZLwr2YoelOCBHMd4CSFUxtU8OhJAVCA6H5NucboI3aJq2iUNTUxxajNQv6bB2dD122NM71w8BWzq4VZdgQhgc0pOvi_kpNRidpb6n5c-HhYst0uvPl9TigK_IyyW20b1-_Gfky8WHxfmn7Orm4-X5_CqrZQ5DlkvLwNrCKSFrI5FJxXOL3NSGsUIBVMwIp6qccaysYEXNS6OUtcsSeFlJMSNnk-5mNJ2z9bSt3oSmw_BDe2z0v5W-WeuVv9PJgmJr0YycPAoE_310cdBdE2vXttg7P0bN80olR0W-nfX2GfXWj6FP52kuGRRJkOeJxSdWHXyMwS13yzDQ2-j0FJ1O0enf0en71PTm7zN2LX-ySgQxEWIq9SsXnmb_R_YXKDqjsg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Trutti, Anne C.</creator><creator>Fontanesi, Laura</creator><creator>Mulder, Martijn J.</creator><creator>Bazin, Pierre-Louis</creator><creator>Hommel, Bernhard</creator><creator>Forstmann, Birte U.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0044-4846</orcidid></search><sort><creationdate>20210501</creationdate><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><author>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatomy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Cell Biology</topic><topic>Cognitive ability</topic><topic>Functional magnetic resonance imaging</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Reinforcement</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trutti, Anne C.</creatorcontrib><creatorcontrib>Fontanesi, Laura</creatorcontrib><creatorcontrib>Mulder, Martijn J.</creatorcontrib><creatorcontrib>Bazin, Pierre-Louis</creatorcontrib><creatorcontrib>Hommel, Bernhard</creatorcontrib><creatorcontrib>Forstmann, Birte U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trutti, Anne C.</au><au>Fontanesi, Laura</au><au>Mulder, Martijn J.</au><au>Bazin, Pierre-Louis</au><au>Hommel, Bernhard</au><au>Forstmann, Birte U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>226</volume><issue>4</issue><spage>1155</spage><epage>1167</epage><pages>1155-1167</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33580320</pmid><doi>10.1007/s00429-021-02231-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0044-4846</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1863-2653
ispartof Brain Structure and Function, 2021-05, Vol.226 (4), p.1155-1167
issn 1863-2653
1863-2661
0340-2061
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036186
source Springer Nature - Complete Springer Journals
subjects Anatomy
Biomedical and Life Sciences
Biomedicine
Brain architecture
Brain mapping
Cell Biology
Cognitive ability
Functional magnetic resonance imaging
Image processing
Magnetic resonance imaging
Nervous system
Neuroimaging
Neurology
Neurosciences
Original
Original Article
Reinforcement
Ventral tegmentum
title A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20atlas%20of%20the%20human%20ventral%20tegmental%20area%20(VTA)%20based%20on%207%C2%A0Tesla%20MRI%20data&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Trutti,%20Anne%20C.&rft.date=2021-05-01&rft.volume=226&rft.issue=4&rft.spage=1155&rft.epage=1167&rft.pages=1155-1167&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-021-02231-w&rft_dat=%3Cproquest_pubme%3E2510636124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510636124&rft_id=info:pmid/33580320&rfr_iscdi=true