A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data
Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortic...
Gespeichert in:
Veröffentlicht in: | Brain Structure and Function 2021-05, Vol.226 (4), p.1155-1167 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1167 |
---|---|
container_issue | 4 |
container_start_page | 1155 |
container_title | Brain Structure and Function |
container_volume | 226 |
creator | Trutti, Anne C. Fontanesi, Laura Mulder, Martijn J. Bazin, Pierre-Louis Hommel, Bernhard Forstmann, Birte U. |
description | Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data. |
doi_str_mv | 10.1007/s00429-021-02231-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2510636124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</originalsourceid><addsrcrecordid>eNp9UU1v1DAQtSpQPxb-QA_IEpf2EBjbcRJfKq0qCpVaVUILBy7WOPbupkrixU5a8W_6W_hleEnZQg8cLD9p3ryZeY-QYwbvGED5PgLkXGXAWXpcsOx-jxyyqhAZLwr2YoelOCBHMd4CSFUxtU8OhJAVCA6H5NucboI3aJq2iUNTUxxajNQv6bB2dD122NM71w8BWzq4VZdgQhgc0pOvi_kpNRidpb6n5c-HhYst0uvPl9TigK_IyyW20b1-_Gfky8WHxfmn7Orm4-X5_CqrZQ5DlkvLwNrCKSFrI5FJxXOL3NSGsUIBVMwIp6qccaysYEXNS6OUtcsSeFlJMSNnk-5mNJ2z9bSt3oSmw_BDe2z0v5W-WeuVv9PJgmJr0YycPAoE_310cdBdE2vXttg7P0bN80olR0W-nfX2GfXWj6FP52kuGRRJkOeJxSdWHXyMwS13yzDQ2-j0FJ1O0enf0en71PTm7zN2LX-ySgQxEWIq9SsXnmb_R_YXKDqjsg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2510636124</pqid></control><display><type>article</type><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><source>Springer Nature - Complete Springer Journals</source><creator>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</creator><creatorcontrib>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</creatorcontrib><description>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</description><identifier>ISSN: 1863-2653</identifier><identifier>EISSN: 1863-2661</identifier><identifier>EISSN: 0340-2061</identifier><identifier>DOI: 10.1007/s00429-021-02231-w</identifier><identifier>PMID: 33580320</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anatomy ; Biomedical and Life Sciences ; Biomedicine ; Brain architecture ; Brain mapping ; Cell Biology ; Cognitive ability ; Functional magnetic resonance imaging ; Image processing ; Magnetic resonance imaging ; Nervous system ; Neuroimaging ; Neurology ; Neurosciences ; Original ; Original Article ; Reinforcement ; Ventral tegmentum</subject><ispartof>Brain Structure and Function, 2021-05, Vol.226 (4), p.1155-1167</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</citedby><cites>FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</cites><orcidid>0000-0002-0044-4846</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00429-021-02231-w$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00429-021-02231-w$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Trutti, Anne C.</creatorcontrib><creatorcontrib>Fontanesi, Laura</creatorcontrib><creatorcontrib>Mulder, Martijn J.</creatorcontrib><creatorcontrib>Bazin, Pierre-Louis</creatorcontrib><creatorcontrib>Hommel, Bernhard</creatorcontrib><creatorcontrib>Forstmann, Birte U.</creatorcontrib><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><title>Brain Structure and Function</title><addtitle>Brain Struct Funct</addtitle><addtitle>Brain Struct Funct</addtitle><description>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</description><subject>Anatomy</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain architecture</subject><subject>Brain mapping</subject><subject>Cell Biology</subject><subject>Cognitive ability</subject><subject>Functional magnetic resonance imaging</subject><subject>Image processing</subject><subject>Magnetic resonance imaging</subject><subject>Nervous system</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neurosciences</subject><subject>Original</subject><subject>Original Article</subject><subject>Reinforcement</subject><subject>Ventral tegmentum</subject><issn>1863-2653</issn><issn>1863-2661</issn><issn>0340-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UU1v1DAQtSpQPxb-QA_IEpf2EBjbcRJfKq0qCpVaVUILBy7WOPbupkrixU5a8W_6W_hleEnZQg8cLD9p3ryZeY-QYwbvGED5PgLkXGXAWXpcsOx-jxyyqhAZLwr2YoelOCBHMd4CSFUxtU8OhJAVCA6H5NucboI3aJq2iUNTUxxajNQv6bB2dD122NM71w8BWzq4VZdgQhgc0pOvi_kpNRidpb6n5c-HhYst0uvPl9TigK_IyyW20b1-_Gfky8WHxfmn7Orm4-X5_CqrZQ5DlkvLwNrCKSFrI5FJxXOL3NSGsUIBVMwIp6qccaysYEXNS6OUtcsSeFlJMSNnk-5mNJ2z9bSt3oSmw_BDe2z0v5W-WeuVv9PJgmJr0YycPAoE_310cdBdE2vXttg7P0bN80olR0W-nfX2GfXWj6FP52kuGRRJkOeJxSdWHXyMwS13yzDQ2-j0FJ1O0enf0en71PTm7zN2LX-ySgQxEWIq9SsXnmb_R_YXKDqjsg</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Trutti, Anne C.</creator><creator>Fontanesi, Laura</creator><creator>Mulder, Martijn J.</creator><creator>Bazin, Pierre-Louis</creator><creator>Hommel, Bernhard</creator><creator>Forstmann, Birte U.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0044-4846</orcidid></search><sort><creationdate>20210501</creationdate><title>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</title><author>Trutti, Anne C. ; Fontanesi, Laura ; Mulder, Martijn J. ; Bazin, Pierre-Louis ; Hommel, Bernhard ; Forstmann, Birte U.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-45d10dd6e935cb5a15924da2bcb11690081b3e98412a8d316c27b99ddf7027853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anatomy</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain architecture</topic><topic>Brain mapping</topic><topic>Cell Biology</topic><topic>Cognitive ability</topic><topic>Functional magnetic resonance imaging</topic><topic>Image processing</topic><topic>Magnetic resonance imaging</topic><topic>Nervous system</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neurosciences</topic><topic>Original</topic><topic>Original Article</topic><topic>Reinforcement</topic><topic>Ventral tegmentum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trutti, Anne C.</creatorcontrib><creatorcontrib>Fontanesi, Laura</creatorcontrib><creatorcontrib>Mulder, Martijn J.</creatorcontrib><creatorcontrib>Bazin, Pierre-Louis</creatorcontrib><creatorcontrib>Hommel, Bernhard</creatorcontrib><creatorcontrib>Forstmann, Birte U.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Brain Structure and Function</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trutti, Anne C.</au><au>Fontanesi, Laura</au><au>Mulder, Martijn J.</au><au>Bazin, Pierre-Louis</au><au>Hommel, Bernhard</au><au>Forstmann, Birte U.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data</atitle><jtitle>Brain Structure and Function</jtitle><stitle>Brain Struct Funct</stitle><addtitle>Brain Struct Funct</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>226</volume><issue>4</issue><spage>1155</spage><epage>1167</epage><pages>1155-1167</pages><issn>1863-2653</issn><eissn>1863-2661</eissn><eissn>0340-2061</eissn><abstract>Functional magnetic resonance imaging (fMRI) BOLD signal is commonly localized by using neuroanatomical atlases, which can also serve for region of interest analyses. Yet, the available MRI atlases have serious limitations when it comes to imaging subcortical structures: only 7% of the 455 subcortical nuclei are captured by current atlases. This highlights the general difficulty in mapping smaller nuclei deep in the brain, which can be addressed using ultra-high field 7 Tesla (T) MRI. The ventral tegmental area (VTA) is a subcortical structure that plays a pivotal role in reward processing, learning and memory. Despite the significant interest in this nucleus in cognitive neuroscience, there are currently no available, anatomically precise VTA atlases derived from 7 T MRI data that cover the full region of the VTA. Here, we first provide a protocol for multimodal VTA imaging and delineation. We then provide a data description of a probabilistic VTA atlas based on in vivo 7 T MRI data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33580320</pmid><doi>10.1007/s00429-021-02231-w</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0044-4846</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-2653 |
ispartof | Brain Structure and Function, 2021-05, Vol.226 (4), p.1155-1167 |
issn | 1863-2653 1863-2661 0340-2061 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8036186 |
source | Springer Nature - Complete Springer Journals |
subjects | Anatomy Biomedical and Life Sciences Biomedicine Brain architecture Brain mapping Cell Biology Cognitive ability Functional magnetic resonance imaging Image processing Magnetic resonance imaging Nervous system Neuroimaging Neurology Neurosciences Original Original Article Reinforcement Ventral tegmentum |
title | A probabilistic atlas of the human ventral tegmental area (VTA) based on 7 Tesla MRI data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20probabilistic%20atlas%20of%20the%20human%20ventral%20tegmental%20area%20(VTA)%20based%20on%207%C2%A0Tesla%20MRI%20data&rft.jtitle=Brain%20Structure%20and%20Function&rft.au=Trutti,%20Anne%20C.&rft.date=2021-05-01&rft.volume=226&rft.issue=4&rft.spage=1155&rft.epage=1167&rft.pages=1155-1167&rft.issn=1863-2653&rft.eissn=1863-2661&rft_id=info:doi/10.1007/s00429-021-02231-w&rft_dat=%3Cproquest_pubme%3E2510636124%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2510636124&rft_id=info:pmid/33580320&rfr_iscdi=true |