Generalizing randomized trial findings to a target population using complex survey population data
Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2021-02, Vol.40 (5), p.1101-1120 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1120 |
---|---|
container_issue | 5 |
container_start_page | 1101 |
container_title | Statistics in medicine |
container_volume | 40 |
creator | Ackerman, Benjamin Lesko, Catherine R. Siddique, Juned Susukida, Ryoko Stuart, Elizabeth A. |
description | Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and population. Statistical methods have been developed to improve generalizability by combining trials and population data, and weighting the trial to resemble the population on baseline covariates. Large‐scale surveys in fields such as health and education with complex survey designs are a logical source for population data; however, there is currently no best practice for incorporating survey weights when generalizing trial findings to a complex survey. We propose and investigate ways to incorporate survey weights in this context. We examine the performance of our proposed estimator through simulations in comparison to estimators that ignore the complex survey design. We then apply the methods to generalize findings from two trials—a lifestyle intervention for blood pressure reduction and a web‐based intervention to treat substance use disorders—to their respective target populations using population data from complex surveys. The work highlights the importance in properly accounting for the complex survey design when generalizing trial findings to a population represented by a complex survey sample. |
doi_str_mv | 10.1002/sim.8822 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486670942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5042-f62477adf7836fb379512058ef5dc137bb8a8ffacb4f54960c08a9373a4c80e23</originalsourceid><addsrcrecordid>eNp1kU1rFTEUhoMo9rYK_gIJuHEz9eQ7sxGkaC1UXKjrkMkk15SZyZjMtN7--ubaWqvg6ize5zycw4vQCwLHBIC-KXE81prSR2hDoFUNUKEfow1QpRqpiDhAh6VcABAiqHqKDhijnEhQG9Sd-slnO8TrOG1xtlOfxnjte7zkaAcc4tTXoOAlYYsXm7d-wXOa18EuMU14Lfs1l8Z58D9xWfOl3z3Me7vYZ-hJsEPxz-_mEfr24f3Xk4_N-efTs5N3540TwGkTJOVK2T4ozWTomGoFoSC0D6J3hKmu01aHYF3Hg-CtBAfatkwxy50GT9kRenvrnddu9L3z01IfM3OOo807k2w0fydT_G626dJoYFxLVQWv7wQ5_Vh9WcwYi_PDYCef1mIol1yCBMEr-uof9CKtearvVUpLqaDl9I_Q5VRK9uH-GAJmX5ypxZl9cRV9-fD4e_B3UxVoboGrOPjdf0Xmy9mnX8IbACKkIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486670942</pqid></control><display><type>article</type><title>Generalizing randomized trial findings to a target population using complex survey population data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ackerman, Benjamin ; Lesko, Catherine R. ; Siddique, Juned ; Susukida, Ryoko ; Stuart, Elizabeth A.</creator><creatorcontrib>Ackerman, Benjamin ; Lesko, Catherine R. ; Siddique, Juned ; Susukida, Ryoko ; Stuart, Elizabeth A.</creatorcontrib><description>Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and population. Statistical methods have been developed to improve generalizability by combining trials and population data, and weighting the trial to resemble the population on baseline covariates. Large‐scale surveys in fields such as health and education with complex survey designs are a logical source for population data; however, there is currently no best practice for incorporating survey weights when generalizing trial findings to a complex survey. We propose and investigate ways to incorporate survey weights in this context. We examine the performance of our proposed estimator through simulations in comparison to estimators that ignore the complex survey design. We then apply the methods to generalize findings from two trials—a lifestyle intervention for blood pressure reduction and a web‐based intervention to treat substance use disorders—to their respective target populations using population data from complex surveys. The work highlights the importance in properly accounting for the complex survey design when generalizing trial findings to a population represented by a complex survey sample.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.8822</identifier><identifier>PMID: 33241607</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>causal inference ; Causality ; complex survey data ; generalizability ; Health Services Needs and Demand ; Humans ; propensity scores ; Substance-Related Disorders ; Surveys and Questionnaires ; transportability</subject><ispartof>Statistics in medicine, 2021-02, Vol.40 (5), p.1101-1120</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5042-f62477adf7836fb379512058ef5dc137bb8a8ffacb4f54960c08a9373a4c80e23</citedby><cites>FETCH-LOGICAL-c5042-f62477adf7836fb379512058ef5dc137bb8a8ffacb4f54960c08a9373a4c80e23</cites><orcidid>0000-0003-2522-6623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.8822$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.8822$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33241607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackerman, Benjamin</creatorcontrib><creatorcontrib>Lesko, Catherine R.</creatorcontrib><creatorcontrib>Siddique, Juned</creatorcontrib><creatorcontrib>Susukida, Ryoko</creatorcontrib><creatorcontrib>Stuart, Elizabeth A.</creatorcontrib><title>Generalizing randomized trial findings to a target population using complex survey population data</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and population. Statistical methods have been developed to improve generalizability by combining trials and population data, and weighting the trial to resemble the population on baseline covariates. Large‐scale surveys in fields such as health and education with complex survey designs are a logical source for population data; however, there is currently no best practice for incorporating survey weights when generalizing trial findings to a complex survey. We propose and investigate ways to incorporate survey weights in this context. We examine the performance of our proposed estimator through simulations in comparison to estimators that ignore the complex survey design. We then apply the methods to generalize findings from two trials—a lifestyle intervention for blood pressure reduction and a web‐based intervention to treat substance use disorders—to their respective target populations using population data from complex surveys. The work highlights the importance in properly accounting for the complex survey design when generalizing trial findings to a population represented by a complex survey sample.</description><subject>causal inference</subject><subject>Causality</subject><subject>complex survey data</subject><subject>generalizability</subject><subject>Health Services Needs and Demand</subject><subject>Humans</subject><subject>propensity scores</subject><subject>Substance-Related Disorders</subject><subject>Surveys and Questionnaires</subject><subject>transportability</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kU1rFTEUhoMo9rYK_gIJuHEz9eQ7sxGkaC1UXKjrkMkk15SZyZjMtN7--ubaWqvg6ize5zycw4vQCwLHBIC-KXE81prSR2hDoFUNUKEfow1QpRqpiDhAh6VcABAiqHqKDhijnEhQG9Sd-slnO8TrOG1xtlOfxnjte7zkaAcc4tTXoOAlYYsXm7d-wXOa18EuMU14Lfs1l8Z58D9xWfOl3z3Me7vYZ-hJsEPxz-_mEfr24f3Xk4_N-efTs5N3540TwGkTJOVK2T4ozWTomGoFoSC0D6J3hKmu01aHYF3Hg-CtBAfatkwxy50GT9kRenvrnddu9L3z01IfM3OOo807k2w0fydT_G626dJoYFxLVQWv7wQ5_Vh9WcwYi_PDYCef1mIol1yCBMEr-uof9CKtearvVUpLqaDl9I_Q5VRK9uH-GAJmX5ypxZl9cRV9-fD4e_B3UxVoboGrOPjdf0Xmy9mnX8IbACKkIQ</recordid><startdate>20210228</startdate><enddate>20210228</enddate><creator>Ackerman, Benjamin</creator><creator>Lesko, Catherine R.</creator><creator>Siddique, Juned</creator><creator>Susukida, Ryoko</creator><creator>Stuart, Elizabeth A.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2522-6623</orcidid></search><sort><creationdate>20210228</creationdate><title>Generalizing randomized trial findings to a target population using complex survey population data</title><author>Ackerman, Benjamin ; Lesko, Catherine R. ; Siddique, Juned ; Susukida, Ryoko ; Stuart, Elizabeth A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5042-f62477adf7836fb379512058ef5dc137bb8a8ffacb4f54960c08a9373a4c80e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>causal inference</topic><topic>Causality</topic><topic>complex survey data</topic><topic>generalizability</topic><topic>Health Services Needs and Demand</topic><topic>Humans</topic><topic>propensity scores</topic><topic>Substance-Related Disorders</topic><topic>Surveys and Questionnaires</topic><topic>transportability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackerman, Benjamin</creatorcontrib><creatorcontrib>Lesko, Catherine R.</creatorcontrib><creatorcontrib>Siddique, Juned</creatorcontrib><creatorcontrib>Susukida, Ryoko</creatorcontrib><creatorcontrib>Stuart, Elizabeth A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackerman, Benjamin</au><au>Lesko, Catherine R.</au><au>Siddique, Juned</au><au>Susukida, Ryoko</au><au>Stuart, Elizabeth A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalizing randomized trial findings to a target population using complex survey population data</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2021-02-28</date><risdate>2021</risdate><volume>40</volume><issue>5</issue><spage>1101</spage><epage>1120</epage><pages>1101-1120</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Randomized trials are considered the gold standard for estimating causal effects. Trial findings are often used to inform policy and programming efforts, yet their results may not generalize well to a relevant target population due to potential differences in effect moderators between the trial and population. Statistical methods have been developed to improve generalizability by combining trials and population data, and weighting the trial to resemble the population on baseline covariates. Large‐scale surveys in fields such as health and education with complex survey designs are a logical source for population data; however, there is currently no best practice for incorporating survey weights when generalizing trial findings to a complex survey. We propose and investigate ways to incorporate survey weights in this context. We examine the performance of our proposed estimator through simulations in comparison to estimators that ignore the complex survey design. We then apply the methods to generalize findings from two trials—a lifestyle intervention for blood pressure reduction and a web‐based intervention to treat substance use disorders—to their respective target populations using population data from complex surveys. The work highlights the importance in properly accounting for the complex survey design when generalizing trial findings to a population represented by a complex survey sample.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33241607</pmid><doi>10.1002/sim.8822</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2522-6623</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2021-02, Vol.40 (5), p.1101-1120 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8034867 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | causal inference Causality complex survey data generalizability Health Services Needs and Demand Humans propensity scores Substance-Related Disorders Surveys and Questionnaires transportability |
title | Generalizing randomized trial findings to a target population using complex survey population data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalizing%20randomized%20trial%20findings%20to%20a%20target%20population%20using%20complex%20survey%20population%20data&rft.jtitle=Statistics%20in%20medicine&rft.au=Ackerman,%20Benjamin&rft.date=2021-02-28&rft.volume=40&rft.issue=5&rft.spage=1101&rft.epage=1120&rft.pages=1101-1120&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.8822&rft_dat=%3Cproquest_pubme%3E2486670942%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2486670942&rft_id=info:pmid/33241607&rfr_iscdi=true |