The Dawn of Mitophagy: What Do We Know by Now?

Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current neuropharmacology 2021-01, Vol.19 (2), p.170-192
Hauptverfasser: Belousov, Dmitrii M, Mikhaylenko, Elizaveta V, Somasundaram, Siva G, Kirkland, Cecil E, Aliev, Gjumrakch
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 2
container_start_page 170
container_title Current neuropharmacology
container_volume 19
creator Belousov, Dmitrii M
Mikhaylenko, Elizaveta V
Somasundaram, Siva G
Kirkland, Cecil E
Aliev, Gjumrakch
description Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
doi_str_mv 10.2174/1570159X18666200522202319
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8033973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2406307979</sourcerecordid><originalsourceid>FETCH-LOGICAL-b604t-945718e328eb504b015db29100aa6ba1d65fce1047d47d5cdaf44404820fbf143</originalsourceid><addsrcrecordid>eNp1kEFv1DAQhSMEoqXwF1C4cUkZO04ccwChlhZEgUtRuY0cZ7IJJHaInUZ754fjZcsKDkiWPPJ87_npJckzBqecSfGCFRJYob6yqixLDlBwzoHnTN1Ljlkli6xkCu7HOXLZDjxKHnn_DYAXFZcPk6OcC8GhksfJ6XVH6blebera9GMf3NTpzfZletPpkJ679IbSD9atab1NP7n19ePkQasHT0_u7pPky8Xb67N32dXny_dnb66yugQRMiUKySrKeUV1AaKOaZuaKwagdVlr1pRFa4iBkE08hWl0K4QAUXFo65aJ_CR5tfedlnqkxpANsx5wmvtRz1t0usd_N7bvcONusYI8VzKPBs_vDGb3YyEfcOy9oWHQltzikQsoc5BKqoiqPWpm5_1M7eEbBrjrG__bd9Q-_TvnQfmn4Aj83AN1DNrp0ZuerKED2IUw4bquSMtM37WngUxA40Z0E9llHuJsQ9Ti1E24ITsT6jn0ZiDsvbe_s-EuHN66YRkJmdotFkKOftKb-CAh_wXwKay1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406307979</pqid></control><display><type>article</type><title>The Dawn of Mitophagy: What Do We Know by Now?</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Belousov, Dmitrii M ; Mikhaylenko, Elizaveta V ; Somasundaram, Siva G ; Kirkland, Cecil E ; Aliev, Gjumrakch</creator><creatorcontrib>Belousov, Dmitrii M ; Mikhaylenko, Elizaveta V ; Somasundaram, Siva G ; Kirkland, Cecil E ; Aliev, Gjumrakch</creatorcontrib><description>Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.</description><identifier>ISSN: 1570-159X</identifier><identifier>EISSN: 1875-6190</identifier><identifier>DOI: 10.2174/1570159X18666200522202319</identifier><identifier>PMID: 32442087</identifier><language>eng</language><publisher>United Arab Emirates: Bentham Science Publishers Ltd</publisher><ispartof>Current neuropharmacology, 2021-01, Vol.19 (2), p.170-192</ispartof><rights>Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.</rights><rights>2021 Bentham Science Publishers 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b604t-945718e328eb504b015db29100aa6ba1d65fce1047d47d5cdaf44404820fbf143</citedby><cites>FETCH-LOGICAL-b604t-945718e328eb504b015db29100aa6ba1d65fce1047d47d5cdaf44404820fbf143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033973/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8033973/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32442087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Belousov, Dmitrii M</creatorcontrib><creatorcontrib>Mikhaylenko, Elizaveta V</creatorcontrib><creatorcontrib>Somasundaram, Siva G</creatorcontrib><creatorcontrib>Kirkland, Cecil E</creatorcontrib><creatorcontrib>Aliev, Gjumrakch</creatorcontrib><title>The Dawn of Mitophagy: What Do We Know by Now?</title><title>Current neuropharmacology</title><addtitle>CN</addtitle><description>Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.</description><issn>1570-159X</issn><issn>1875-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEFv1DAQhSMEoqXwF1C4cUkZO04ccwChlhZEgUtRuY0cZ7IJJHaInUZ754fjZcsKDkiWPPJ87_npJckzBqecSfGCFRJYob6yqixLDlBwzoHnTN1Ljlkli6xkCu7HOXLZDjxKHnn_DYAXFZcPk6OcC8GhksfJ6XVH6blebera9GMf3NTpzfZletPpkJ679IbSD9atab1NP7n19ePkQasHT0_u7pPky8Xb67N32dXny_dnb66yugQRMiUKySrKeUV1AaKOaZuaKwagdVlr1pRFa4iBkE08hWl0K4QAUXFo65aJ_CR5tfedlnqkxpANsx5wmvtRz1t0usd_N7bvcONusYI8VzKPBs_vDGb3YyEfcOy9oWHQltzikQsoc5BKqoiqPWpm5_1M7eEbBrjrG__bd9Q-_TvnQfmn4Aj83AN1DNrp0ZuerKED2IUw4bquSMtM37WngUxA40Z0E9llHuJsQ9Ti1E24ITsT6jn0ZiDsvbe_s-EuHN66YRkJmdotFkKOftKb-CAh_wXwKay1</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Belousov, Dmitrii M</creator><creator>Mikhaylenko, Elizaveta V</creator><creator>Somasundaram, Siva G</creator><creator>Kirkland, Cecil E</creator><creator>Aliev, Gjumrakch</creator><general>Bentham Science Publishers Ltd</general><general>Bentham Science Publishers</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>The Dawn of Mitophagy: What Do We Know by Now?</title><author>Belousov, Dmitrii M ; Mikhaylenko, Elizaveta V ; Somasundaram, Siva G ; Kirkland, Cecil E ; Aliev, Gjumrakch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b604t-945718e328eb504b015db29100aa6ba1d65fce1047d47d5cdaf44404820fbf143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belousov, Dmitrii M</creatorcontrib><creatorcontrib>Mikhaylenko, Elizaveta V</creatorcontrib><creatorcontrib>Somasundaram, Siva G</creatorcontrib><creatorcontrib>Kirkland, Cecil E</creatorcontrib><creatorcontrib>Aliev, Gjumrakch</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current neuropharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belousov, Dmitrii M</au><au>Mikhaylenko, Elizaveta V</au><au>Somasundaram, Siva G</au><au>Kirkland, Cecil E</au><au>Aliev, Gjumrakch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Dawn of Mitophagy: What Do We Know by Now?</atitle><jtitle>Current neuropharmacology</jtitle><addtitle>CN</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>19</volume><issue>2</issue><spage>170</spage><epage>192</epage><pages>170-192</pages><issn>1570-159X</issn><eissn>1875-6190</eissn><abstract>Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.</abstract><cop>United Arab Emirates</cop><pub>Bentham Science Publishers Ltd</pub><pmid>32442087</pmid><doi>10.2174/1570159X18666200522202319</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-159X
ispartof Current neuropharmacology, 2021-01, Vol.19 (2), p.170-192
issn 1570-159X
1875-6190
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8033973
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title The Dawn of Mitophagy: What Do We Know by Now?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Dawn%20of%20Mitophagy:%20What%20Do%20We%20Know%20by%20Now?&rft.jtitle=Current%20neuropharmacology&rft.au=Belousov,%20Dmitrii%20M&rft.date=2021-01-01&rft.volume=19&rft.issue=2&rft.spage=170&rft.epage=192&rft.pages=170-192&rft.issn=1570-159X&rft.eissn=1875-6190&rft_id=info:doi/10.2174/1570159X18666200522202319&rft_dat=%3Cproquest_pubme%3E2406307979%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406307979&rft_id=info:pmid/32442087&rfr_iscdi=true