Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database
Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC. We anal...
Gespeichert in:
Veröffentlicht in: | Frontiers in oncology 2021-03, Vol.11, p.614398-614398 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 614398 |
---|---|
container_issue | |
container_start_page | 614398 |
container_title | Frontiers in oncology |
container_volume | 11 |
creator | Ahn, Ji Hyun Kwak, Min Seob Lee, Hun Hee Cha, Jae Myung Shin, Hyun Phil Jeon, Jung Won Yoon, Jin Young |
description | Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC.
We analyzed data from the 2004-2016 Surveillance Epidemiology and End Results database to develop and validate prediction models for LNM. Seven models, namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression trees model, support vector machines, neural network, and random forest (RF) models, were used.
A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The models included 8 independent prognostic variables; age at diagnosis, sex, race, primary site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in patients with larger tumors, women, younger patients, and patients with more poorly differentiated tumor. The RF model showed the best predictive performance in comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of 99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the most important features in predicting LNM in early CRC.
We established a simplified reproducible predictive model for LNM in early CRC that could be used to guide treatment decisions. These findings warrant further confirmation in large prospective clinical trials. |
doi_str_mv | 10.3389/fonc.2021.614398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8029977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ad789dd316654ef891a367022931c86a</doaj_id><sourcerecordid>2511896901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-78b469922fc5069138a7eaffdec610230b3d52924d65d3816b0ee6f16c2e2b7e3</originalsourceid><addsrcrecordid>eNpVUktv1DAYjBCIVqV3TshHDt3Fj8SxOSCV7QKVtoB4SNwsx_6SdeXEwc6utL-LP4jDlqq1bNkaz4yt0RTFS4KXjAn5pg2DWVJMyZKTkknxpDillJULWbJfTx-cT4rzlG5xHrzCBLPnxUnWl5SR-rT4cwV78GHsYZhQaJFGn0MG0NcYuiGkyRl0E2wG2hAzCNaZyQ0d2hz6cZu5FtANTDrl6RJyA1rr6A9oFXyIYCbt0UoPBuJbdDlof5hJ73UCi8KApi2g77u4B-f9TLpA69FZ6F0Wd4cLpAeL1nl9g7TzU0JXetJNFr8onrXaJzi_28-Knx_WP1afFpsvH69Xl5uFqaiYFrVoSi4lpa2pMJeECV2DblsLhhNMGW6YraikpeWVZYLwBgPwlnBDgTY1sLPi-uhrg75VY3S9jgcVtFP_gBA7pWNOyIPSthbSWkY4r0pohSSa8RpTKhkxguvs9e7oNe6aHqzJcUftH5k-vhncVnVhrwSmUtZ1Nnh9ZxDD7x2kSfUuGZiTg7BLilaECMklJpmKj1QTQ0oR2vtnCFZzddRcHTVXRx2rkyWvHn7vXvC_KOwv55vClQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511896901</pqid></control><display><type>article</type><title>Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Ahn, Ji Hyun ; Kwak, Min Seob ; Lee, Hun Hee ; Cha, Jae Myung ; Shin, Hyun Phil ; Jeon, Jung Won ; Yoon, Jin Young</creator><creatorcontrib>Ahn, Ji Hyun ; Kwak, Min Seob ; Lee, Hun Hee ; Cha, Jae Myung ; Shin, Hyun Phil ; Jeon, Jung Won ; Yoon, Jin Young</creatorcontrib><description>Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC.
We analyzed data from the 2004-2016 Surveillance Epidemiology and End Results database to develop and validate prediction models for LNM. Seven models, namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression trees model, support vector machines, neural network, and random forest (RF) models, were used.
A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The models included 8 independent prognostic variables; age at diagnosis, sex, race, primary site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in patients with larger tumors, women, younger patients, and patients with more poorly differentiated tumor. The RF model showed the best predictive performance in comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of 99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the most important features in predicting LNM in early CRC.
We established a simplified reproducible predictive model for LNM in early CRC that could be used to guide treatment decisions. These findings warrant further confirmation in large prospective clinical trials.</description><identifier>ISSN: 2234-943X</identifier><identifier>EISSN: 2234-943X</identifier><identifier>DOI: 10.3389/fonc.2021.614398</identifier><identifier>PMID: 33842317</identifier><language>eng</language><publisher>Switzerland: Frontiers Media S.A</publisher><subject>colorectal cancer ; machine learning ; metastasis ; Oncology ; prediction</subject><ispartof>Frontiers in oncology, 2021-03, Vol.11, p.614398-614398</ispartof><rights>Copyright © 2021 Ahn, Kwak, Lee, Cha, Shin, Jeon and Yoon.</rights><rights>Copyright © 2021 Ahn, Kwak, Lee, Cha, Shin, Jeon and Yoon 2021 Ahn, Kwak, Lee, Cha, Shin, Jeon and Yoon</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-78b469922fc5069138a7eaffdec610230b3d52924d65d3816b0ee6f16c2e2b7e3</citedby><cites>FETCH-LOGICAL-c528t-78b469922fc5069138a7eaffdec610230b3d52924d65d3816b0ee6f16c2e2b7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029977/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8029977/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33842317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Ji Hyun</creatorcontrib><creatorcontrib>Kwak, Min Seob</creatorcontrib><creatorcontrib>Lee, Hun Hee</creatorcontrib><creatorcontrib>Cha, Jae Myung</creatorcontrib><creatorcontrib>Shin, Hyun Phil</creatorcontrib><creatorcontrib>Jeon, Jung Won</creatorcontrib><creatorcontrib>Yoon, Jin Young</creatorcontrib><title>Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database</title><title>Frontiers in oncology</title><addtitle>Front Oncol</addtitle><description>Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC.
We analyzed data from the 2004-2016 Surveillance Epidemiology and End Results database to develop and validate prediction models for LNM. Seven models, namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression trees model, support vector machines, neural network, and random forest (RF) models, were used.
A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The models included 8 independent prognostic variables; age at diagnosis, sex, race, primary site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in patients with larger tumors, women, younger patients, and patients with more poorly differentiated tumor. The RF model showed the best predictive performance in comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of 99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the most important features in predicting LNM in early CRC.
We established a simplified reproducible predictive model for LNM in early CRC that could be used to guide treatment decisions. These findings warrant further confirmation in large prospective clinical trials.</description><subject>colorectal cancer</subject><subject>machine learning</subject><subject>metastasis</subject><subject>Oncology</subject><subject>prediction</subject><issn>2234-943X</issn><issn>2234-943X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUktv1DAYjBCIVqV3TshHDt3Fj8SxOSCV7QKVtoB4SNwsx_6SdeXEwc6utL-LP4jDlqq1bNkaz4yt0RTFS4KXjAn5pg2DWVJMyZKTkknxpDillJULWbJfTx-cT4rzlG5xHrzCBLPnxUnWl5SR-rT4cwV78GHsYZhQaJFGn0MG0NcYuiGkyRl0E2wG2hAzCNaZyQ0d2hz6cZu5FtANTDrl6RJyA1rr6A9oFXyIYCbt0UoPBuJbdDlof5hJ73UCi8KApi2g77u4B-f9TLpA69FZ6F0Wd4cLpAeL1nl9g7TzU0JXetJNFr8onrXaJzi_28-Knx_WP1afFpsvH69Xl5uFqaiYFrVoSi4lpa2pMJeECV2DblsLhhNMGW6YraikpeWVZYLwBgPwlnBDgTY1sLPi-uhrg75VY3S9jgcVtFP_gBA7pWNOyIPSthbSWkY4r0pohSSa8RpTKhkxguvs9e7oNe6aHqzJcUftH5k-vhncVnVhrwSmUtZ1Nnh9ZxDD7x2kSfUuGZiTg7BLilaECMklJpmKj1QTQ0oR2vtnCFZzddRcHTVXRx2rkyWvHn7vXvC_KOwv55vClQ</recordid><startdate>20210325</startdate><enddate>20210325</enddate><creator>Ahn, Ji Hyun</creator><creator>Kwak, Min Seob</creator><creator>Lee, Hun Hee</creator><creator>Cha, Jae Myung</creator><creator>Shin, Hyun Phil</creator><creator>Jeon, Jung Won</creator><creator>Yoon, Jin Young</creator><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210325</creationdate><title>Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database</title><author>Ahn, Ji Hyun ; Kwak, Min Seob ; Lee, Hun Hee ; Cha, Jae Myung ; Shin, Hyun Phil ; Jeon, Jung Won ; Yoon, Jin Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-78b469922fc5069138a7eaffdec610230b3d52924d65d3816b0ee6f16c2e2b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>colorectal cancer</topic><topic>machine learning</topic><topic>metastasis</topic><topic>Oncology</topic><topic>prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Ji Hyun</creatorcontrib><creatorcontrib>Kwak, Min Seob</creatorcontrib><creatorcontrib>Lee, Hun Hee</creatorcontrib><creatorcontrib>Cha, Jae Myung</creatorcontrib><creatorcontrib>Shin, Hyun Phil</creatorcontrib><creatorcontrib>Jeon, Jung Won</creatorcontrib><creatorcontrib>Yoon, Jin Young</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Ji Hyun</au><au>Kwak, Min Seob</au><au>Lee, Hun Hee</au><au>Cha, Jae Myung</au><au>Shin, Hyun Phil</au><au>Jeon, Jung Won</au><au>Yoon, Jin Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database</atitle><jtitle>Frontiers in oncology</jtitle><addtitle>Front Oncol</addtitle><date>2021-03-25</date><risdate>2021</risdate><volume>11</volume><spage>614398</spage><epage>614398</epage><pages>614398-614398</pages><issn>2234-943X</issn><eissn>2234-943X</eissn><abstract>Identification of a simplified prediction model for lymph node metastasis (LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine treatment and follow-up strategies. Therefore, in this study, we aimed to develop an accurate predictive model for LNM in early CRC.
We analyzed data from the 2004-2016 Surveillance Epidemiology and End Results database to develop and validate prediction models for LNM. Seven models, namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression trees model, support vector machines, neural network, and random forest (RF) models, were used.
A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The models included 8 independent prognostic variables; age at diagnosis, sex, race, primary site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in patients with larger tumors, women, younger patients, and patients with more poorly differentiated tumor. The RF model showed the best predictive performance in comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of 99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the most important features in predicting LNM in early CRC.
We established a simplified reproducible predictive model for LNM in early CRC that could be used to guide treatment decisions. These findings warrant further confirmation in large prospective clinical trials.</abstract><cop>Switzerland</cop><pub>Frontiers Media S.A</pub><pmid>33842317</pmid><doi>10.3389/fonc.2021.614398</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2234-943X |
ispartof | Frontiers in oncology, 2021-03, Vol.11, p.614398-614398 |
issn | 2234-943X 2234-943X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8029977 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | colorectal cancer machine learning metastasis Oncology prediction |
title | Development of a Novel Prognostic Model for Predicting Lymph Node Metastasis in Early Colorectal Cancer: Analysis Based on the Surveillance, Epidemiology, and End Results Database |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Novel%20Prognostic%20Model%20for%20Predicting%20Lymph%20Node%20Metastasis%20in%20Early%20Colorectal%20Cancer:%20Analysis%20Based%20on%20the%20Surveillance,%20Epidemiology,%20and%20End%20Results%20Database&rft.jtitle=Frontiers%20in%20oncology&rft.au=Ahn,%20Ji%20Hyun&rft.date=2021-03-25&rft.volume=11&rft.spage=614398&rft.epage=614398&rft.pages=614398-614398&rft.issn=2234-943X&rft.eissn=2234-943X&rft_id=info:doi/10.3389/fonc.2021.614398&rft_dat=%3Cproquest_doaj_%3E2511896901%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511896901&rft_id=info:pmid/33842317&rft_doaj_id=oai_doaj_org_article_ad789dd316654ef891a367022931c86a&rfr_iscdi=true |