Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation

Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death and differentiation 2021-04, Vol.28 (4), p.1301-1316
Hauptverfasser: Snodgrass, Ryan G., Benatzy, Yvonne, Schmid, Tobias, Namgaladze, Dmitry, Mainka, Malwina, Schebb, Nils Helge, Lütjohann, Dieter, Brüne, Bernhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1316
container_issue 4
container_start_page 1301
container_title Cell death and differentiation
container_volume 28
creator Snodgrass, Ryan G.
Benatzy, Yvonne
Schmid, Tobias
Namgaladze, Dmitry
Mainka, Malwina
Schebb, Nils Helge
Lütjohann, Dieter
Brüne, Bernhard
description Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.
doi_str_mv 10.1038/s41418-020-00652-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8027700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460086121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-816ec342a8a21a4df55baf2ed115ffa5d22bd856dfdafa330216a5f301ccd0153</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEohd4ARbIEpt2kTK-JTkbpKpqAelIlRBI3VlzfElcJXGwk6rnQXhf3J62FBasPNJ8_z-e-YviHYUTCrz5mAQVtCmBQQlQSVaKF8U-FXVVSgH8Za65hHIFot4rDlK6hkzVq-p1scc5reuKrvaLX-fO2Rj0dg7JJzKF2Y6zx9kmMneW2Nsp2pR8GElwBCPqzpsw5j6hsuz9FG63rR0xWXJ0ur68ovKY-JFgP9uYKX9j-y1BnYssMaRbBhzJgDqGqcP2fkgMS9uR9dW3Ry4Pe1O8ctgn-_bhPSx-XJx_P_tSri8_fz07XZda1GIuG1pZzQXDBhlFYZyUG3TMGkqlcygNYxvTyMo4gw45B0YrlI4D1doAlfyw-LTznZbNYI3Ou0fs1RT9gHGrAnr1d2f0nWrDjWqA1TVANjh6MIjh52LTrAaftO17HG1YkmKiAmgqymhGP_yDXoclH6nPlISVYA1jTabYjsonSila9_QZCuoudbVLXeXU1X3qSmTR--drPEkeY84A3wEpt8bWxj-z_2P7G242vCc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509428228</pqid></control><display><type>article</type><title>Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Snodgrass, Ryan G. ; Benatzy, Yvonne ; Schmid, Tobias ; Namgaladze, Dmitry ; Mainka, Malwina ; Schebb, Nils Helge ; Lütjohann, Dieter ; Brüne, Bernhard</creator><creatorcontrib>Snodgrass, Ryan G. ; Benatzy, Yvonne ; Schmid, Tobias ; Namgaladze, Dmitry ; Mainka, Malwina ; Schebb, Nils Helge ; Lütjohann, Dieter ; Brüne, Bernhard</creatorcontrib><description>Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.</description><identifier>ISSN: 1350-9047</identifier><identifier>EISSN: 1476-5403</identifier><identifier>DOI: 10.1038/s41418-020-00652-4</identifier><identifier>PMID: 33177619</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/106 ; 13/109 ; 13/2 ; 13/31 ; 13/89 ; 38/39 ; 38/91 ; 631/250/1933 ; 631/250/256/2515 ; 631/45/287/1197 ; 82/58 ; 82/80 ; Apoptosis ; Arachidonate 15-lipoxygenase ; Arachidonate 15-Lipoxygenase - genetics ; Arachidonate 15-Lipoxygenase - metabolism ; Biochemistry ; Biomedical and Life Sciences ; Cell activation ; Cell Biology ; Cell Cycle Analysis ; Cholesterol ; Cholesterol - metabolism ; Cytokines ; Cytokines - genetics ; Cytokines - metabolism ; Fluorocarbons - pharmacology ; Gene Expression ; Gene Expression Profiling ; Humans ; Immune clearance ; Inflammation ; Interleukin 1 ; Interleukin 1 receptor antagonist ; Interleukin 13 ; Interleukin 4 ; Intermediates ; Lanosterol ; Life Sciences ; Lipid Metabolism ; Lipoxygenase ; Liver X receptors ; Lymphocytes T ; Lysosomes ; Macrophages ; Macrophages - immunology ; Macrophages - metabolism ; Npc1 protein ; Phagocytosis ; Protein Binding ; Receptor mechanisms ; RNA, Small Interfering - genetics ; Stem Cells ; Sterol regulatory element-binding protein ; Sterols ; Sulfonamides - pharmacology ; Transcriptomes ; Wound healing</subject><ispartof>Cell death and differentiation, 2021-04, Vol.28 (4), p.1301-1316</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-816ec342a8a21a4df55baf2ed115ffa5d22bd856dfdafa330216a5f301ccd0153</citedby><cites>FETCH-LOGICAL-c474t-816ec342a8a21a4df55baf2ed115ffa5d22bd856dfdafa330216a5f301ccd0153</cites><orcidid>0000-0001-8237-2841</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,41488,42557,51319,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33177619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Benatzy, Yvonne</creatorcontrib><creatorcontrib>Schmid, Tobias</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Mainka, Malwina</creatorcontrib><creatorcontrib>Schebb, Nils Helge</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><title>Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation</title><title>Cell death and differentiation</title><addtitle>Cell Death Differ</addtitle><addtitle>Cell Death Differ</addtitle><description>Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.</description><subject>13</subject><subject>13/106</subject><subject>13/109</subject><subject>13/2</subject><subject>13/31</subject><subject>13/89</subject><subject>38/39</subject><subject>38/91</subject><subject>631/250/1933</subject><subject>631/250/256/2515</subject><subject>631/45/287/1197</subject><subject>82/58</subject><subject>82/80</subject><subject>Apoptosis</subject><subject>Arachidonate 15-lipoxygenase</subject><subject>Arachidonate 15-Lipoxygenase - genetics</subject><subject>Arachidonate 15-Lipoxygenase - metabolism</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell activation</subject><subject>Cell Biology</subject><subject>Cell Cycle Analysis</subject><subject>Cholesterol</subject><subject>Cholesterol - metabolism</subject><subject>Cytokines</subject><subject>Cytokines - genetics</subject><subject>Cytokines - metabolism</subject><subject>Fluorocarbons - pharmacology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling</subject><subject>Humans</subject><subject>Immune clearance</subject><subject>Inflammation</subject><subject>Interleukin 1</subject><subject>Interleukin 1 receptor antagonist</subject><subject>Interleukin 13</subject><subject>Interleukin 4</subject><subject>Intermediates</subject><subject>Lanosterol</subject><subject>Life Sciences</subject><subject>Lipid Metabolism</subject><subject>Lipoxygenase</subject><subject>Liver X receptors</subject><subject>Lymphocytes T</subject><subject>Lysosomes</subject><subject>Macrophages</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Npc1 protein</subject><subject>Phagocytosis</subject><subject>Protein Binding</subject><subject>Receptor mechanisms</subject><subject>RNA, Small Interfering - genetics</subject><subject>Stem Cells</subject><subject>Sterol regulatory element-binding protein</subject><subject>Sterols</subject><subject>Sulfonamides - pharmacology</subject><subject>Transcriptomes</subject><subject>Wound healing</subject><issn>1350-9047</issn><issn>1476-5403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiMEohd4ARbIEpt2kTK-JTkbpKpqAelIlRBI3VlzfElcJXGwk6rnQXhf3J62FBasPNJ8_z-e-YviHYUTCrz5mAQVtCmBQQlQSVaKF8U-FXVVSgH8Za65hHIFot4rDlK6hkzVq-p1scc5reuKrvaLX-fO2Rj0dg7JJzKF2Y6zx9kmMneW2Nsp2pR8GElwBCPqzpsw5j6hsuz9FG63rR0xWXJ0ur68ovKY-JFgP9uYKX9j-y1BnYssMaRbBhzJgDqGqcP2fkgMS9uR9dW3Ry4Pe1O8ctgn-_bhPSx-XJx_P_tSri8_fz07XZda1GIuG1pZzQXDBhlFYZyUG3TMGkqlcygNYxvTyMo4gw45B0YrlI4D1doAlfyw-LTznZbNYI3Ou0fs1RT9gHGrAnr1d2f0nWrDjWqA1TVANjh6MIjh52LTrAaftO17HG1YkmKiAmgqymhGP_yDXoclH6nPlISVYA1jTabYjsonSila9_QZCuoudbVLXeXU1X3qSmTR--drPEkeY84A3wEpt8bWxj-z_2P7G242vCc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Snodgrass, Ryan G.</creator><creator>Benatzy, Yvonne</creator><creator>Schmid, Tobias</creator><creator>Namgaladze, Dmitry</creator><creator>Mainka, Malwina</creator><creator>Schebb, Nils Helge</creator><creator>Lütjohann, Dieter</creator><creator>Brüne, Bernhard</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8237-2841</orcidid></search><sort><creationdate>20210401</creationdate><title>Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation</title><author>Snodgrass, Ryan G. ; Benatzy, Yvonne ; Schmid, Tobias ; Namgaladze, Dmitry ; Mainka, Malwina ; Schebb, Nils Helge ; Lütjohann, Dieter ; Brüne, Bernhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-816ec342a8a21a4df55baf2ed115ffa5d22bd856dfdafa330216a5f301ccd0153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13</topic><topic>13/106</topic><topic>13/109</topic><topic>13/2</topic><topic>13/31</topic><topic>13/89</topic><topic>38/39</topic><topic>38/91</topic><topic>631/250/1933</topic><topic>631/250/256/2515</topic><topic>631/45/287/1197</topic><topic>82/58</topic><topic>82/80</topic><topic>Apoptosis</topic><topic>Arachidonate 15-lipoxygenase</topic><topic>Arachidonate 15-Lipoxygenase - genetics</topic><topic>Arachidonate 15-Lipoxygenase - metabolism</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell activation</topic><topic>Cell Biology</topic><topic>Cell Cycle Analysis</topic><topic>Cholesterol</topic><topic>Cholesterol - metabolism</topic><topic>Cytokines</topic><topic>Cytokines - genetics</topic><topic>Cytokines - metabolism</topic><topic>Fluorocarbons - pharmacology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling</topic><topic>Humans</topic><topic>Immune clearance</topic><topic>Inflammation</topic><topic>Interleukin 1</topic><topic>Interleukin 1 receptor antagonist</topic><topic>Interleukin 13</topic><topic>Interleukin 4</topic><topic>Intermediates</topic><topic>Lanosterol</topic><topic>Life Sciences</topic><topic>Lipid Metabolism</topic><topic>Lipoxygenase</topic><topic>Liver X receptors</topic><topic>Lymphocytes T</topic><topic>Lysosomes</topic><topic>Macrophages</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Npc1 protein</topic><topic>Phagocytosis</topic><topic>Protein Binding</topic><topic>Receptor mechanisms</topic><topic>RNA, Small Interfering - genetics</topic><topic>Stem Cells</topic><topic>Sterol regulatory element-binding protein</topic><topic>Sterols</topic><topic>Sulfonamides - pharmacology</topic><topic>Transcriptomes</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snodgrass, Ryan G.</creatorcontrib><creatorcontrib>Benatzy, Yvonne</creatorcontrib><creatorcontrib>Schmid, Tobias</creatorcontrib><creatorcontrib>Namgaladze, Dmitry</creatorcontrib><creatorcontrib>Mainka, Malwina</creatorcontrib><creatorcontrib>Schebb, Nils Helge</creatorcontrib><creatorcontrib>Lütjohann, Dieter</creatorcontrib><creatorcontrib>Brüne, Bernhard</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death and differentiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snodgrass, Ryan G.</au><au>Benatzy, Yvonne</au><au>Schmid, Tobias</au><au>Namgaladze, Dmitry</au><au>Mainka, Malwina</au><au>Schebb, Nils Helge</au><au>Lütjohann, Dieter</au><au>Brüne, Bernhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation</atitle><jtitle>Cell death and differentiation</jtitle><stitle>Cell Death Differ</stitle><addtitle>Cell Death Differ</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>28</volume><issue>4</issue><spage>1301</spage><epage>1316</epage><pages>1301-1316</pages><issn>1350-9047</issn><eissn>1476-5403</eissn><abstract>Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann–Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRβ in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33177619</pmid><doi>10.1038/s41418-020-00652-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8237-2841</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-9047
ispartof Cell death and differentiation, 2021-04, Vol.28 (4), p.1301-1316
issn 1350-9047
1476-5403
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8027700
source MEDLINE; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects 13
13/106
13/109
13/2
13/31
13/89
38/39
38/91
631/250/1933
631/250/256/2515
631/45/287/1197
82/58
82/80
Apoptosis
Arachidonate 15-lipoxygenase
Arachidonate 15-Lipoxygenase - genetics
Arachidonate 15-Lipoxygenase - metabolism
Biochemistry
Biomedical and Life Sciences
Cell activation
Cell Biology
Cell Cycle Analysis
Cholesterol
Cholesterol - metabolism
Cytokines
Cytokines - genetics
Cytokines - metabolism
Fluorocarbons - pharmacology
Gene Expression
Gene Expression Profiling
Humans
Immune clearance
Inflammation
Interleukin 1
Interleukin 1 receptor antagonist
Interleukin 13
Interleukin 4
Intermediates
Lanosterol
Life Sciences
Lipid Metabolism
Lipoxygenase
Liver X receptors
Lymphocytes T
Lysosomes
Macrophages
Macrophages - immunology
Macrophages - metabolism
Npc1 protein
Phagocytosis
Protein Binding
Receptor mechanisms
RNA, Small Interfering - genetics
Stem Cells
Sterol regulatory element-binding protein
Sterols
Sulfonamides - pharmacology
Transcriptomes
Wound healing
title Efferocytosis potentiates the expression of arachidonate 15-lipoxygenase (ALOX15) in alternatively activated human macrophages through LXR activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efferocytosis%20potentiates%20the%20expression%20of%20arachidonate%2015-lipoxygenase%20(ALOX15)%20in%20alternatively%20activated%20human%20macrophages%20through%20LXR%20activation&rft.jtitle=Cell%20death%20and%20differentiation&rft.au=Snodgrass,%20Ryan%20G.&rft.date=2021-04-01&rft.volume=28&rft.issue=4&rft.spage=1301&rft.epage=1316&rft.pages=1301-1316&rft.issn=1350-9047&rft.eissn=1476-5403&rft_id=info:doi/10.1038/s41418-020-00652-4&rft_dat=%3Cproquest_pubme%3E2460086121%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509428228&rft_id=info:pmid/33177619&rfr_iscdi=true