A universal allosteric mechanism for G protein activation

G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2021-04, Vol.81 (7), p.1384-1396.e6
Hauptverfasser: Knight, Kevin M., Ghosh, Soumadwip, Campbell, Sharon L., Lefevre, Tyler J., Olsen, Reid H.J., Smrcka, Alan V., Valentin, Natalie H., Yin, Guowei, Vaidehi, Nagarajan, Dohlman, Henrik G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396.e6
container_issue 7
container_start_page 1384
container_title Molecular cell
container_volume 81
creator Knight, Kevin M.
Ghosh, Soumadwip
Campbell, Sharon L.
Lefevre, Tyler J.
Olsen, Reid H.J.
Smrcka, Alan V.
Valentin, Natalie H.
Yin, Guowei
Vaidehi, Nagarajan
Dohlman, Henrik G.
description G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This “G-R-E motif” secures GTP and, through an allosteric link, discharges the Gβγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation. [Display omitted] •Receptors promote GTP-GDP exchange and dissociation of G protein α and βγ subunits•An allosteric Gly-Arg-Glu (G-R-E) network links the γ phosphate of GTP to release of Gβγ•Gly-Arg-Glu mutations prevent subunit dissociation regardless of agonist or GTP binding•Gly-Arg-Glu mutations are responsible for human endocrine and neurological disorders G protein signaling involves binding of agonist to receptor and unbinding of GDP from the G protein. Using integrated molecular and computational approaches, Knight et al. investigate the second, committed step of G protein activation, involving an allosteric “Gly-Arg-Glu” network that links GTP binding to subunit dissociation and pathway activation.
doi_str_mv 10.1016/j.molcel.2021.02.002
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276521000885</els_id><sourcerecordid>2494303978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-55fb16df0a7f67b58e7efbf35f40359ce91adf618c4e427f747b24df061c08aa3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRbK1-A5EcvTTuv-wmF6EUrULBi56XzWbWbkmydTcN-O1Naa168TQD8-a9mR9C1wSnBBNxt04bXxuoU4opSTFNMaYnaExwIaecCH566KkU2QhdxLjGmPAsL87RiDHBBKFijIpZsm1dDyHqOtF17WMHwZmkAbPSrYtNYn1IFskm-A5cm2jTuV53zreX6MzqOsLVoU7Q2-PD6_xpunxZPM9ny6nhgnXTLLMlEZXFWlohyywHCba0LLMcs6wwUBBdWUFyw4FTaSWXJeWDXhCDc63ZBN3vfTfbsoHKQNsFXatNcI0On8prp_5OWrdS775XOaZCDDdM0O3BIPiPLcRONS4O4Grdgt9GRXnBGWaFzAcp30tN8DEGsMcYgtWOulqrPXW1o64wVQP1Ye3m94nHpW_MPz_AAKp3EFQ0DloDlQtgOlV593_CF5sZlpc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2494303978</pqid></control><display><type>article</type><title>A universal allosteric mechanism for G protein activation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Knight, Kevin M. ; Ghosh, Soumadwip ; Campbell, Sharon L. ; Lefevre, Tyler J. ; Olsen, Reid H.J. ; Smrcka, Alan V. ; Valentin, Natalie H. ; Yin, Guowei ; Vaidehi, Nagarajan ; Dohlman, Henrik G.</creator><creatorcontrib>Knight, Kevin M. ; Ghosh, Soumadwip ; Campbell, Sharon L. ; Lefevre, Tyler J. ; Olsen, Reid H.J. ; Smrcka, Alan V. ; Valentin, Natalie H. ; Yin, Guowei ; Vaidehi, Nagarajan ; Dohlman, Henrik G.</creatorcontrib><description>G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This “G-R-E motif” secures GTP and, through an allosteric link, discharges the Gβγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation. [Display omitted] •Receptors promote GTP-GDP exchange and dissociation of G protein α and βγ subunits•An allosteric Gly-Arg-Glu (G-R-E) network links the γ phosphate of GTP to release of Gβγ•Gly-Arg-Glu mutations prevent subunit dissociation regardless of agonist or GTP binding•Gly-Arg-Glu mutations are responsible for human endocrine and neurological disorders G protein signaling involves binding of agonist to receptor and unbinding of GDP from the G protein. Using integrated molecular and computational approaches, Knight et al. investigate the second, committed step of G protein activation, involving an allosteric “Gly-Arg-Glu” network that links GTP binding to subunit dissociation and pathway activation.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2021.02.002</identifier><identifier>PMID: 33636126</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation ; Amino Acid Motifs ; biolayer interferometry ; bioluminescence resonance energy transfer ; G protein ; Guanosine Triphosphate - chemistry ; Guanosine Triphosphate - metabolism ; HEK293 Cells ; Heterotrimeric GTP-Binding Proteins - chemistry ; Heterotrimeric GTP-Binding Proteins - metabolism ; human ; Humans ; Molecular Dynamics Simulation ; nuclear magnetic resonance spectroscopy ; protein allostery ; protein thermostability ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; x-ray crystal structure ; yeast</subject><ispartof>Molecular cell, 2021-04, Vol.81 (7), p.1384-1396.e6</ispartof><rights>2021 Elsevier Inc.</rights><rights>Copyright © 2021 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-55fb16df0a7f67b58e7efbf35f40359ce91adf618c4e427f747b24df061c08aa3</citedby><cites>FETCH-LOGICAL-c463t-55fb16df0a7f67b58e7efbf35f40359ce91adf618c4e427f747b24df061c08aa3</cites><orcidid>0000-0003-1652-7707 ; 0000-0003-2669-7160 ; 0000-0002-7665-3353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2021.02.002$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33636126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knight, Kevin M.</creatorcontrib><creatorcontrib>Ghosh, Soumadwip</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Lefevre, Tyler J.</creatorcontrib><creatorcontrib>Olsen, Reid H.J.</creatorcontrib><creatorcontrib>Smrcka, Alan V.</creatorcontrib><creatorcontrib>Valentin, Natalie H.</creatorcontrib><creatorcontrib>Yin, Guowei</creatorcontrib><creatorcontrib>Vaidehi, Nagarajan</creatorcontrib><creatorcontrib>Dohlman, Henrik G.</creatorcontrib><title>A universal allosteric mechanism for G protein activation</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This “G-R-E motif” secures GTP and, through an allosteric link, discharges the Gβγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation. [Display omitted] •Receptors promote GTP-GDP exchange and dissociation of G protein α and βγ subunits•An allosteric Gly-Arg-Glu (G-R-E) network links the γ phosphate of GTP to release of Gβγ•Gly-Arg-Glu mutations prevent subunit dissociation regardless of agonist or GTP binding•Gly-Arg-Glu mutations are responsible for human endocrine and neurological disorders G protein signaling involves binding of agonist to receptor and unbinding of GDP from the G protein. Using integrated molecular and computational approaches, Knight et al. investigate the second, committed step of G protein activation, involving an allosteric “Gly-Arg-Glu” network that links GTP binding to subunit dissociation and pathway activation.</description><subject>Allosteric Regulation</subject><subject>Amino Acid Motifs</subject><subject>biolayer interferometry</subject><subject>bioluminescence resonance energy transfer</subject><subject>G protein</subject><subject>Guanosine Triphosphate - chemistry</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>HEK293 Cells</subject><subject>Heterotrimeric GTP-Binding Proteins - chemistry</subject><subject>Heterotrimeric GTP-Binding Proteins - metabolism</subject><subject>human</subject><subject>Humans</subject><subject>Molecular Dynamics Simulation</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>protein allostery</subject><subject>protein thermostability</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>x-ray crystal structure</subject><subject>yeast</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9Lw0AQxRdRbK1-A5EcvTTuv-wmF6EUrULBi56XzWbWbkmydTcN-O1Naa168TQD8-a9mR9C1wSnBBNxt04bXxuoU4opSTFNMaYnaExwIaecCH566KkU2QhdxLjGmPAsL87RiDHBBKFijIpZsm1dDyHqOtF17WMHwZmkAbPSrYtNYn1IFskm-A5cm2jTuV53zreX6MzqOsLVoU7Q2-PD6_xpunxZPM9ny6nhgnXTLLMlEZXFWlohyywHCba0LLMcs6wwUBBdWUFyw4FTaSWXJeWDXhCDc63ZBN3vfTfbsoHKQNsFXatNcI0On8prp_5OWrdS775XOaZCDDdM0O3BIPiPLcRONS4O4Grdgt9GRXnBGWaFzAcp30tN8DEGsMcYgtWOulqrPXW1o64wVQP1Ye3m94nHpW_MPz_AAKp3EFQ0DloDlQtgOlV593_CF5sZlpc</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Knight, Kevin M.</creator><creator>Ghosh, Soumadwip</creator><creator>Campbell, Sharon L.</creator><creator>Lefevre, Tyler J.</creator><creator>Olsen, Reid H.J.</creator><creator>Smrcka, Alan V.</creator><creator>Valentin, Natalie H.</creator><creator>Yin, Guowei</creator><creator>Vaidehi, Nagarajan</creator><creator>Dohlman, Henrik G.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1652-7707</orcidid><orcidid>https://orcid.org/0000-0003-2669-7160</orcidid><orcidid>https://orcid.org/0000-0002-7665-3353</orcidid></search><sort><creationdate>20210401</creationdate><title>A universal allosteric mechanism for G protein activation</title><author>Knight, Kevin M. ; Ghosh, Soumadwip ; Campbell, Sharon L. ; Lefevre, Tyler J. ; Olsen, Reid H.J. ; Smrcka, Alan V. ; Valentin, Natalie H. ; Yin, Guowei ; Vaidehi, Nagarajan ; Dohlman, Henrik G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-55fb16df0a7f67b58e7efbf35f40359ce91adf618c4e427f747b24df061c08aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Allosteric Regulation</topic><topic>Amino Acid Motifs</topic><topic>biolayer interferometry</topic><topic>bioluminescence resonance energy transfer</topic><topic>G protein</topic><topic>Guanosine Triphosphate - chemistry</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>HEK293 Cells</topic><topic>Heterotrimeric GTP-Binding Proteins - chemistry</topic><topic>Heterotrimeric GTP-Binding Proteins - metabolism</topic><topic>human</topic><topic>Humans</topic><topic>Molecular Dynamics Simulation</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>protein allostery</topic><topic>protein thermostability</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>x-ray crystal structure</topic><topic>yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knight, Kevin M.</creatorcontrib><creatorcontrib>Ghosh, Soumadwip</creatorcontrib><creatorcontrib>Campbell, Sharon L.</creatorcontrib><creatorcontrib>Lefevre, Tyler J.</creatorcontrib><creatorcontrib>Olsen, Reid H.J.</creatorcontrib><creatorcontrib>Smrcka, Alan V.</creatorcontrib><creatorcontrib>Valentin, Natalie H.</creatorcontrib><creatorcontrib>Yin, Guowei</creatorcontrib><creatorcontrib>Vaidehi, Nagarajan</creatorcontrib><creatorcontrib>Dohlman, Henrik G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knight, Kevin M.</au><au>Ghosh, Soumadwip</au><au>Campbell, Sharon L.</au><au>Lefevre, Tyler J.</au><au>Olsen, Reid H.J.</au><au>Smrcka, Alan V.</au><au>Valentin, Natalie H.</au><au>Yin, Guowei</au><au>Vaidehi, Nagarajan</au><au>Dohlman, Henrik G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A universal allosteric mechanism for G protein activation</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>81</volume><issue>7</issue><spage>1384</spage><epage>1396.e6</epage><pages>1384-1396.e6</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>G proteins play a central role in signal transduction and pharmacology. Signaling is initiated by cell-surface receptors, which promote guanosine triphosphate (GTP) binding and dissociation of Gα from the Gβγ subunits. Structural studies have revealed the molecular basis of subunit association with receptors, RGS proteins, and downstream effectors. In contrast, the mechanism of subunit dissociation is poorly understood. We use cell signaling assays, molecular dynamics (MD) simulations, and biochemistry and structural analyses to identify a conserved network of amino acids that dictates subunit release. In the presence of the terminal phosphate of GTP, a glycine forms a polar network with an arginine and glutamate, putting torsional strain on the subunit binding interface. This “G-R-E motif” secures GTP and, through an allosteric link, discharges the Gβγ dimer. Replacement of network residues prevents subunit dissociation regardless of agonist or GTP binding. These findings reveal the molecular basis of the final committed step of G protein activation. [Display omitted] •Receptors promote GTP-GDP exchange and dissociation of G protein α and βγ subunits•An allosteric Gly-Arg-Glu (G-R-E) network links the γ phosphate of GTP to release of Gβγ•Gly-Arg-Glu mutations prevent subunit dissociation regardless of agonist or GTP binding•Gly-Arg-Glu mutations are responsible for human endocrine and neurological disorders G protein signaling involves binding of agonist to receptor and unbinding of GDP from the G protein. Using integrated molecular and computational approaches, Knight et al. investigate the second, committed step of G protein activation, involving an allosteric “Gly-Arg-Glu” network that links GTP binding to subunit dissociation and pathway activation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33636126</pmid><doi>10.1016/j.molcel.2021.02.002</doi><orcidid>https://orcid.org/0000-0003-1652-7707</orcidid><orcidid>https://orcid.org/0000-0003-2669-7160</orcidid><orcidid>https://orcid.org/0000-0002-7665-3353</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2021-04, Vol.81 (7), p.1384-1396.e6
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026646
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Allosteric Regulation
Amino Acid Motifs
biolayer interferometry
bioluminescence resonance energy transfer
G protein
Guanosine Triphosphate - chemistry
Guanosine Triphosphate - metabolism
HEK293 Cells
Heterotrimeric GTP-Binding Proteins - chemistry
Heterotrimeric GTP-Binding Proteins - metabolism
human
Humans
Molecular Dynamics Simulation
nuclear magnetic resonance spectroscopy
protein allostery
protein thermostability
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
x-ray crystal structure
yeast
title A universal allosteric mechanism for G protein activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20universal%20allosteric%20mechanism%20for%20G%20protein%20activation&rft.jtitle=Molecular%20cell&rft.au=Knight,%20Kevin%20M.&rft.date=2021-04-01&rft.volume=81&rft.issue=7&rft.spage=1384&rft.epage=1396.e6&rft.pages=1384-1396.e6&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2021.02.002&rft_dat=%3Cproquest_pubme%3E2494303978%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2494303978&rft_id=info:pmid/33636126&rft_els_id=S1097276521000885&rfr_iscdi=true