mTOR-driven neural circuit changes initiate an epileptogenic cascade
•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary...
Gespeichert in:
Veröffentlicht in: | Progress in neurobiology 2021-05, Vol.200, p.101974-101974, Article 101974 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101974 |
---|---|
container_issue | |
container_start_page | 101974 |
container_title | Progress in neurobiology |
container_volume | 200 |
creator | LaSarge, Candi L. Pun, Raymund Y.K. Gu, Zhiqing Riccetti, Matthew R. Namboodiri, Devi V. Tiwari, Durgesh Gross, Christina Danzer, Steve C. |
description | •Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits.
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations. |
doi_str_mv | 10.1016/j.pneurobio.2020.101974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030100822030229X</els_id><sourcerecordid>2470026002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</originalsourceid><addsrcrecordid>eNqNkV2LEzEYhYMobl39CzqXgkx9J5nPG2Gpn7CwIL0PmTfvdFOmyZhkuvjvTXdq0SsNhEDynJOTHMbeFLAuoKjf79eTpdm73rg1B_642zXlE7Yq2kbkVVG0T9kKBBQ5QMuv2IsQ9gBQCxDP2ZUQAroWYMU-HrZ333PtzZFsdrJUY4bG42xihvfK7ihkxppoVKRM2YwmM9IU3Y6swQxVQKXpJXs2qDHQq_N6zbafP203X_Pbuy_fNje3OZZNFfOmrETJO6RBC-Q8RakE9thxFIPS3YAEmpBEWfa10LzrNKiqbEjpcsCqFtfsw2I7zf2BNJKNKa6cvDko_1M6ZeTfJ9bcy507yhZ4XXVtMnh7NvDux0whyoMJSOOoLLk5SF42kNA0E9osKHoXgqfhck0B8lSB3MtLBfJUgVwqSMrXf6a86H7_eQLeLcAD9W4IaMgiXbDHkuqmS02lIRLd_j-9MVFF4-zGzTYm6c0ipdTJ0ZCXZ7k2njBK7cw_X_ML-8m-0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470026002</pqid></control><display><type>article</type><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Access via ScienceDirect (Elsevier)</source><creator>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</creator><creatorcontrib>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</creatorcontrib><description>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits.
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</description><identifier>ISSN: 0301-0082</identifier><identifier>EISSN: 1873-5118</identifier><identifier>DOI: 10.1016/j.pneurobio.2020.101974</identifier><identifier>PMID: 33309800</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Animals ; Dentate gate ; Dentate granule cell ; Disease Models, Animal ; Epilepsy ; Epileptogenesis ; Hippocampus - metabolism ; Life Sciences & Biomedicine ; Mice ; mTOR ; Neurons - metabolism ; Neurosciences ; Neurosciences & Neurology ; Optogenetics ; Pten ; Science & Technology ; Seizures ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Progress in neurobiology, 2021-05, Vol.200, p.101974-101974, Article 101974</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000636796300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</citedby><cites>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</cites><orcidid>0000-0002-7378-6046 ; 0000-0001-6057-2527 ; 0000-0001-6514-0862 ; 0000-0002-9985-3593 ; 0000-0001-6903-8080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pneurobio.2020.101974$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33309800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaSarge, Candi L.</creatorcontrib><creatorcontrib>Pun, Raymund Y.K.</creatorcontrib><creatorcontrib>Gu, Zhiqing</creatorcontrib><creatorcontrib>Riccetti, Matthew R.</creatorcontrib><creatorcontrib>Namboodiri, Devi V.</creatorcontrib><creatorcontrib>Tiwari, Durgesh</creatorcontrib><creatorcontrib>Gross, Christina</creatorcontrib><creatorcontrib>Danzer, Steve C.</creatorcontrib><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><title>Progress in neurobiology</title><addtitle>PROG NEUROBIOL</addtitle><addtitle>Prog Neurobiol</addtitle><description>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits.
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</description><subject>Animals</subject><subject>Dentate gate</subject><subject>Dentate granule cell</subject><subject>Disease Models, Animal</subject><subject>Epilepsy</subject><subject>Epileptogenesis</subject><subject>Hippocampus - metabolism</subject><subject>Life Sciences & Biomedicine</subject><subject>Mice</subject><subject>mTOR</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Optogenetics</subject><subject>Pten</subject><subject>Science & Technology</subject><subject>Seizures</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0301-0082</issn><issn>1873-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV2LEzEYhYMobl39CzqXgkx9J5nPG2Gpn7CwIL0PmTfvdFOmyZhkuvjvTXdq0SsNhEDynJOTHMbeFLAuoKjf79eTpdm73rg1B_642zXlE7Yq2kbkVVG0T9kKBBQ5QMuv2IsQ9gBQCxDP2ZUQAroWYMU-HrZ333PtzZFsdrJUY4bG42xihvfK7ihkxppoVKRM2YwmM9IU3Y6swQxVQKXpJXs2qDHQq_N6zbafP203X_Pbuy_fNje3OZZNFfOmrETJO6RBC-Q8RakE9thxFIPS3YAEmpBEWfa10LzrNKiqbEjpcsCqFtfsw2I7zf2BNJKNKa6cvDko_1M6ZeTfJ9bcy507yhZ4XXVtMnh7NvDux0whyoMJSOOoLLk5SF42kNA0E9osKHoXgqfhck0B8lSB3MtLBfJUgVwqSMrXf6a86H7_eQLeLcAD9W4IaMgiXbDHkuqmS02lIRLd_j-9MVFF4-zGzTYm6c0ipdTJ0ZCXZ7k2njBK7cw_X_ML-8m-0w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>LaSarge, Candi L.</creator><creator>Pun, Raymund Y.K.</creator><creator>Gu, Zhiqing</creator><creator>Riccetti, Matthew R.</creator><creator>Namboodiri, Devi V.</creator><creator>Tiwari, Durgesh</creator><creator>Gross, Christina</creator><creator>Danzer, Steve C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7378-6046</orcidid><orcidid>https://orcid.org/0000-0001-6057-2527</orcidid><orcidid>https://orcid.org/0000-0001-6514-0862</orcidid><orcidid>https://orcid.org/0000-0002-9985-3593</orcidid><orcidid>https://orcid.org/0000-0001-6903-8080</orcidid></search><sort><creationdate>20210501</creationdate><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><author>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Dentate gate</topic><topic>Dentate granule cell</topic><topic>Disease Models, Animal</topic><topic>Epilepsy</topic><topic>Epileptogenesis</topic><topic>Hippocampus - metabolism</topic><topic>Life Sciences & Biomedicine</topic><topic>Mice</topic><topic>mTOR</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Optogenetics</topic><topic>Pten</topic><topic>Science & Technology</topic><topic>Seizures</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaSarge, Candi L.</creatorcontrib><creatorcontrib>Pun, Raymund Y.K.</creatorcontrib><creatorcontrib>Gu, Zhiqing</creatorcontrib><creatorcontrib>Riccetti, Matthew R.</creatorcontrib><creatorcontrib>Namboodiri, Devi V.</creatorcontrib><creatorcontrib>Tiwari, Durgesh</creatorcontrib><creatorcontrib>Gross, Christina</creatorcontrib><creatorcontrib>Danzer, Steve C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaSarge, Candi L.</au><au>Pun, Raymund Y.K.</au><au>Gu, Zhiqing</au><au>Riccetti, Matthew R.</au><au>Namboodiri, Devi V.</au><au>Tiwari, Durgesh</au><au>Gross, Christina</au><au>Danzer, Steve C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTOR-driven neural circuit changes initiate an epileptogenic cascade</atitle><jtitle>Progress in neurobiology</jtitle><stitle>PROG NEUROBIOL</stitle><addtitle>Prog Neurobiol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>200</volume><spage>101974</spage><epage>101974</epage><pages>101974-101974</pages><artnum>101974</artnum><issn>0301-0082</issn><eissn>1873-5118</eissn><abstract>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits.
Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33309800</pmid><doi>10.1016/j.pneurobio.2020.101974</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7378-6046</orcidid><orcidid>https://orcid.org/0000-0001-6057-2527</orcidid><orcidid>https://orcid.org/0000-0001-6514-0862</orcidid><orcidid>https://orcid.org/0000-0002-9985-3593</orcidid><orcidid>https://orcid.org/0000-0001-6903-8080</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-0082 |
ispartof | Progress in neurobiology, 2021-05, Vol.200, p.101974-101974, Article 101974 |
issn | 0301-0082 1873-5118 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026598 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier) |
subjects | Animals Dentate gate Dentate granule cell Disease Models, Animal Epilepsy Epileptogenesis Hippocampus - metabolism Life Sciences & Biomedicine Mice mTOR Neurons - metabolism Neurosciences Neurosciences & Neurology Optogenetics Pten Science & Technology Seizures TOR Serine-Threonine Kinases - metabolism |
title | mTOR-driven neural circuit changes initiate an epileptogenic cascade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTOR-driven%20neural%20circuit%20changes%20initiate%20an%20epileptogenic%20cascade&rft.jtitle=Progress%20in%20neurobiology&rft.au=LaSarge,%20Candi%20L.&rft.date=2021-05-01&rft.volume=200&rft.spage=101974&rft.epage=101974&rft.pages=101974-101974&rft.artnum=101974&rft.issn=0301-0082&rft.eissn=1873-5118&rft_id=info:doi/10.1016/j.pneurobio.2020.101974&rft_dat=%3Cproquest_pubme%3E2470026002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470026002&rft_id=info:pmid/33309800&rft_els_id=S030100822030229X&rfr_iscdi=true |