mTOR-driven neural circuit changes initiate an epileptogenic cascade

•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in neurobiology 2021-05, Vol.200, p.101974-101974, Article 101974
Hauptverfasser: LaSarge, Candi L., Pun, Raymund Y.K., Gu, Zhiqing, Riccetti, Matthew R., Namboodiri, Devi V., Tiwari, Durgesh, Gross, Christina, Danzer, Steve C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101974
container_issue
container_start_page 101974
container_title Progress in neurobiology
container_volume 200
creator LaSarge, Candi L.
Pun, Raymund Y.K.
Gu, Zhiqing
Riccetti, Matthew R.
Namboodiri, Devi V.
Tiwari, Durgesh
Gross, Christina
Danzer, Steve C.
description •Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits. Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.
doi_str_mv 10.1016/j.pneurobio.2020.101974
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030100822030229X</els_id><sourcerecordid>2470026002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</originalsourceid><addsrcrecordid>eNqNkV2LEzEYhYMobl39CzqXgkx9J5nPG2Gpn7CwIL0PmTfvdFOmyZhkuvjvTXdq0SsNhEDynJOTHMbeFLAuoKjf79eTpdm73rg1B_642zXlE7Yq2kbkVVG0T9kKBBQ5QMuv2IsQ9gBQCxDP2ZUQAroWYMU-HrZ333PtzZFsdrJUY4bG42xihvfK7ihkxppoVKRM2YwmM9IU3Y6swQxVQKXpJXs2qDHQq_N6zbafP203X_Pbuy_fNje3OZZNFfOmrETJO6RBC-Q8RakE9thxFIPS3YAEmpBEWfa10LzrNKiqbEjpcsCqFtfsw2I7zf2BNJKNKa6cvDko_1M6ZeTfJ9bcy507yhZ4XXVtMnh7NvDux0whyoMJSOOoLLk5SF42kNA0E9osKHoXgqfhck0B8lSB3MtLBfJUgVwqSMrXf6a86H7_eQLeLcAD9W4IaMgiXbDHkuqmS02lIRLd_j-9MVFF4-zGzTYm6c0ipdTJ0ZCXZ7k2njBK7cw_X_ML-8m-0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470026002</pqid></control><display><type>article</type><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Access via ScienceDirect (Elsevier)</source><creator>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</creator><creatorcontrib>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</creatorcontrib><description>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits. Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</description><identifier>ISSN: 0301-0082</identifier><identifier>EISSN: 1873-5118</identifier><identifier>DOI: 10.1016/j.pneurobio.2020.101974</identifier><identifier>PMID: 33309800</identifier><language>eng</language><publisher>OXFORD: Elsevier Ltd</publisher><subject>Animals ; Dentate gate ; Dentate granule cell ; Disease Models, Animal ; Epilepsy ; Epileptogenesis ; Hippocampus - metabolism ; Life Sciences &amp; Biomedicine ; Mice ; mTOR ; Neurons - metabolism ; Neurosciences ; Neurosciences &amp; Neurology ; Optogenetics ; Pten ; Science &amp; Technology ; Seizures ; TOR Serine-Threonine Kinases - metabolism</subject><ispartof>Progress in neurobiology, 2021-05, Vol.200, p.101974-101974, Article 101974</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>16</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000636796300003</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</citedby><cites>FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</cites><orcidid>0000-0002-7378-6046 ; 0000-0001-6057-2527 ; 0000-0001-6514-0862 ; 0000-0002-9985-3593 ; 0000-0001-6903-8080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pneurobio.2020.101974$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,39263,46000</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33309800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>LaSarge, Candi L.</creatorcontrib><creatorcontrib>Pun, Raymund Y.K.</creatorcontrib><creatorcontrib>Gu, Zhiqing</creatorcontrib><creatorcontrib>Riccetti, Matthew R.</creatorcontrib><creatorcontrib>Namboodiri, Devi V.</creatorcontrib><creatorcontrib>Tiwari, Durgesh</creatorcontrib><creatorcontrib>Gross, Christina</creatorcontrib><creatorcontrib>Danzer, Steve C.</creatorcontrib><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><title>Progress in neurobiology</title><addtitle>PROG NEUROBIOL</addtitle><addtitle>Prog Neurobiol</addtitle><description>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits. Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</description><subject>Animals</subject><subject>Dentate gate</subject><subject>Dentate granule cell</subject><subject>Disease Models, Animal</subject><subject>Epilepsy</subject><subject>Epileptogenesis</subject><subject>Hippocampus - metabolism</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Mice</subject><subject>mTOR</subject><subject>Neurons - metabolism</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Optogenetics</subject><subject>Pten</subject><subject>Science &amp; Technology</subject><subject>Seizures</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><issn>0301-0082</issn><issn>1873-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV2LEzEYhYMobl39CzqXgkx9J5nPG2Gpn7CwIL0PmTfvdFOmyZhkuvjvTXdq0SsNhEDynJOTHMbeFLAuoKjf79eTpdm73rg1B_642zXlE7Yq2kbkVVG0T9kKBBQ5QMuv2IsQ9gBQCxDP2ZUQAroWYMU-HrZ333PtzZFsdrJUY4bG42xihvfK7ihkxppoVKRM2YwmM9IU3Y6swQxVQKXpJXs2qDHQq_N6zbafP203X_Pbuy_fNje3OZZNFfOmrETJO6RBC-Q8RakE9thxFIPS3YAEmpBEWfa10LzrNKiqbEjpcsCqFtfsw2I7zf2BNJKNKa6cvDko_1M6ZeTfJ9bcy507yhZ4XXVtMnh7NvDux0whyoMJSOOoLLk5SF42kNA0E9osKHoXgqfhck0B8lSB3MtLBfJUgVwqSMrXf6a86H7_eQLeLcAD9W4IaMgiXbDHkuqmS02lIRLd_j-9MVFF4-zGzTYm6c0ipdTJ0ZCXZ7k2njBK7cw_X_ML-8m-0w</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>LaSarge, Candi L.</creator><creator>Pun, Raymund Y.K.</creator><creator>Gu, Zhiqing</creator><creator>Riccetti, Matthew R.</creator><creator>Namboodiri, Devi V.</creator><creator>Tiwari, Durgesh</creator><creator>Gross, Christina</creator><creator>Danzer, Steve C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7378-6046</orcidid><orcidid>https://orcid.org/0000-0001-6057-2527</orcidid><orcidid>https://orcid.org/0000-0001-6514-0862</orcidid><orcidid>https://orcid.org/0000-0002-9985-3593</orcidid><orcidid>https://orcid.org/0000-0001-6903-8080</orcidid></search><sort><creationdate>20210501</creationdate><title>mTOR-driven neural circuit changes initiate an epileptogenic cascade</title><author>LaSarge, Candi L. ; Pun, Raymund Y.K. ; Gu, Zhiqing ; Riccetti, Matthew R. ; Namboodiri, Devi V. ; Tiwari, Durgesh ; Gross, Christina ; Danzer, Steve C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-7453429cefd3c2230353cbc92c3fad9fce0dece344b63d299d0a547ead4fc563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Dentate gate</topic><topic>Dentate granule cell</topic><topic>Disease Models, Animal</topic><topic>Epilepsy</topic><topic>Epileptogenesis</topic><topic>Hippocampus - metabolism</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Mice</topic><topic>mTOR</topic><topic>Neurons - metabolism</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Optogenetics</topic><topic>Pten</topic><topic>Science &amp; Technology</topic><topic>Seizures</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LaSarge, Candi L.</creatorcontrib><creatorcontrib>Pun, Raymund Y.K.</creatorcontrib><creatorcontrib>Gu, Zhiqing</creatorcontrib><creatorcontrib>Riccetti, Matthew R.</creatorcontrib><creatorcontrib>Namboodiri, Devi V.</creatorcontrib><creatorcontrib>Tiwari, Durgesh</creatorcontrib><creatorcontrib>Gross, Christina</creatorcontrib><creatorcontrib>Danzer, Steve C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Progress in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LaSarge, Candi L.</au><au>Pun, Raymund Y.K.</au><au>Gu, Zhiqing</au><au>Riccetti, Matthew R.</au><au>Namboodiri, Devi V.</au><au>Tiwari, Durgesh</au><au>Gross, Christina</au><au>Danzer, Steve C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mTOR-driven neural circuit changes initiate an epileptogenic cascade</atitle><jtitle>Progress in neurobiology</jtitle><stitle>PROG NEUROBIOL</stitle><addtitle>Prog Neurobiol</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>200</volume><spage>101974</spage><epage>101974</epage><pages>101974-101974</pages><artnum>101974</artnum><issn>0301-0082</issn><eissn>1873-5118</eissn><abstract>•Low levels of Pten KO hippocampal granule cells produce subclinical brain hyperexcitability.•High Pten KO granule cell loads are associated with generalized seizures and interneuron loss.•Pten KO granule cells mediate the formation of recurrent excitatory circuits.•Pten KO cells initiate secondary changes in surrounding, initially normal neuronal circuits. Mutations in genes regulating mTOR pathway signaling are now recognized as a significant cause of epilepsy. Interestingly, these mTORopathies are often caused by somatic mutations, affecting variable numbers of neurons. To better understand how this variability affects disease phenotype, we developed a mouse model in which the mTOR pathway inhibitor Pten can be deleted from 0 to 40 % of hippocampal granule cells. In vivo, low numbers of knockout cells caused focal seizures, while higher numbers led to generalized seizures. Generalized seizures coincided with the loss of local circuit interneurons. In hippocampal slices, low knockout cell loads produced abrupt reductions in population spike threshold, while spontaneous excitatory postsynaptic currents and circuit level recurrent activity increased gradually with rising knockout cell load. Findings demonstrate that knockout cells load is a critical variable regulating disease phenotype, progressing from subclinical circuit abnormalities to electrobehavioral seizures with secondary involvement of downstream neuronal populations.</abstract><cop>OXFORD</cop><pub>Elsevier Ltd</pub><pmid>33309800</pmid><doi>10.1016/j.pneurobio.2020.101974</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7378-6046</orcidid><orcidid>https://orcid.org/0000-0001-6057-2527</orcidid><orcidid>https://orcid.org/0000-0001-6514-0862</orcidid><orcidid>https://orcid.org/0000-0002-9985-3593</orcidid><orcidid>https://orcid.org/0000-0001-6903-8080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0301-0082
ispartof Progress in neurobiology, 2021-05, Vol.200, p.101974-101974, Article 101974
issn 0301-0082
1873-5118
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8026598
source MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Access via ScienceDirect (Elsevier)
subjects Animals
Dentate gate
Dentate granule cell
Disease Models, Animal
Epilepsy
Epileptogenesis
Hippocampus - metabolism
Life Sciences & Biomedicine
Mice
mTOR
Neurons - metabolism
Neurosciences
Neurosciences & Neurology
Optogenetics
Pten
Science & Technology
Seizures
TOR Serine-Threonine Kinases - metabolism
title mTOR-driven neural circuit changes initiate an epileptogenic cascade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mTOR-driven%20neural%20circuit%20changes%20initiate%20an%20epileptogenic%20cascade&rft.jtitle=Progress%20in%20neurobiology&rft.au=LaSarge,%20Candi%20L.&rft.date=2021-05-01&rft.volume=200&rft.spage=101974&rft.epage=101974&rft.pages=101974-101974&rft.artnum=101974&rft.issn=0301-0082&rft.eissn=1873-5118&rft_id=info:doi/10.1016/j.pneurobio.2020.101974&rft_dat=%3Cproquest_pubme%3E2470026002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470026002&rft_id=info:pmid/33309800&rft_els_id=S030100822030229X&rfr_iscdi=true