Confined palladium colloids in mesoporous frameworks for carbon nanotube growth

Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2009, Vol.44 (24), p.6563-6570
Hauptverfasser: Berenguer-Murcia, Angel, Rebrov, Evgeny V., Cabaj, Maciej, Wheatley, Andrew E. H., Johnson, Brian F. G., Robertson, John, Schouten, Jaap C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Palladium colloidal nanoparticles with an average size of approximately 2.4 nm have been incorporated into mesoporous inorganic thin films following a multistep approach. This involves the deposition of mesoporous titania thin films with a thickness of 200 nm by spin-coating on titanium plates with a superhydrophilic titania outer layer and activation by calcination in a vacuum furnace at 573 K. Nanoparticles have been confined within the porous titania network by dip-coating noble metal suspensions onto these mesoporous thin films. Finally, the resulting nanoconfined systems were used as substrates for the growth of oriented carbon nanotubes (CNTs) using plasma-enhanced chemical vapour deposition at 923 K in order to enhance their surface area. These CNTs were tested in the hydrogenation of phenylacetylene by hydrogen in a batch reactor. The initial reaction rate observed on a CNT/TiO 2 structured catalyst was considerably higher than that on 1 wt% Pd/TiO 2 thin films.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-009-3629-y