The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment

Abstract High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:G3 : genes - genomes - genetics 2021-02, Vol.11 (2)
Hauptverfasser: Rogers, Anna R, Dunne, Jeffrey C, Romay, Cinta, Bohn, Martin, Buckler, Edward S, Ciampitti, Ignacio A, Edwards, Jode, Ertl, David, Flint-Garcia, Sherry, Gore, Michael A, Graham, Christopher, Hirsch, Candice N, Hood, Elizabeth, Hooker, David C, Knoll, Joseph, Lee, Elizabeth C, Lorenz, Aaron, Lynch, Jonathan P, McKay, John, Moose, Stephen P, Murray, Seth C, Nelson, Rebecca, Rocheford, Torbert, Schnable, James C, Schnable, Patrick S, Sekhon, Rajandeep, Singh, Maninder, Smith, Margaret, Springer, Nathan, Thelen, Kurt, Thomison, Peter, Thompson, Addie, Tuinstra, Mitch, Wallace, Jason, Wisser, Randall J, Xu, Wenwei, Gilmour, A R, Kaeppler, Shawn M, De Leon, Natalia, Holland, James B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title G3 : genes - genomes - genetics
container_volume 11
creator Rogers, Anna R
Dunne, Jeffrey C
Romay, Cinta
Bohn, Martin
Buckler, Edward S
Ciampitti, Ignacio A
Edwards, Jode
Ertl, David
Flint-Garcia, Sherry
Gore, Michael A
Graham, Christopher
Hirsch, Candice N
Hood, Elizabeth
Hooker, David C
Knoll, Joseph
Lee, Elizabeth C
Lorenz, Aaron
Lynch, Jonathan P
McKay, John
Moose, Stephen P
Murray, Seth C
Nelson, Rebecca
Rocheford, Torbert
Schnable, James C
Schnable, Patrick S
Sekhon, Rajandeep
Singh, Maninder
Smith, Margaret
Springer, Nathan
Thelen, Kurt
Thomison, Peter
Thompson, Addie
Tuinstra, Mitch
Wallace, Jason
Wisser, Randall J
Xu, Wenwei
Gilmour, A R
Kaeppler, Shawn M
De Leon, Natalia
Holland, James B
description Abstract High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.
doi_str_mv 10.1093/g3journal/jkaa050
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/g3journal/jkaa050</oup_id><sourcerecordid>2489597650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3874-9340b1c155c573315d5dfbfb99267d48e9faf5a5bef945ec3a8a8796161e33a73</originalsourceid><addsrcrecordid>eNqNUcFu1DAQjRCIVqUfwAX5yIFQO44d-4KEKihIlbiUszVxJqmXxA52suryGXxxveyyKjd8Gc_Me2-e9IriNaPvGdX8auCbsEYP49XmBwAV9FlxXjFJS6a4fP7kf1ZcprSh-QkhZS1fFmecCyWUbM6L33f3SNw0h7iAt0hCT7owOf-nAd-RAX1YdjOW7a5Ev3Ux-An9QpxfMIJdXPCJBE-GCM6TncOxI1uIDvabjCJARogDlsnCiGRe29FZYkOYM31xWyQTuF9I8CEP3F76VfGihzHh5bFeFN8_f7q7_lLefrv5ev3xtrRcNXWpeU1bZpkQVjScM9GJrm_7VutKNl2tUPfQCxAt9roWaDkoUI2WTDLkHBp-UXw46GZPE3Y2n44wmjm7gLgzAZz5d-PdvRnC1ihaVVqxLPD2KBDDzxXTYiaXLI4jeAxrMlWttNCNFDRD2QFqY0gpYn86w6jZx2lOcZpjnJnz5qm_E-NveBnw7gAI6_wfeo8UOrMu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2489597650</pqid></control><display><type>article</type><title>The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Rogers, Anna R ; Dunne, Jeffrey C ; Romay, Cinta ; Bohn, Martin ; Buckler, Edward S ; Ciampitti, Ignacio A ; Edwards, Jode ; Ertl, David ; Flint-Garcia, Sherry ; Gore, Michael A ; Graham, Christopher ; Hirsch, Candice N ; Hood, Elizabeth ; Hooker, David C ; Knoll, Joseph ; Lee, Elizabeth C ; Lorenz, Aaron ; Lynch, Jonathan P ; McKay, John ; Moose, Stephen P ; Murray, Seth C ; Nelson, Rebecca ; Rocheford, Torbert ; Schnable, James C ; Schnable, Patrick S ; Sekhon, Rajandeep ; Singh, Maninder ; Smith, Margaret ; Springer, Nathan ; Thelen, Kurt ; Thomison, Peter ; Thompson, Addie ; Tuinstra, Mitch ; Wallace, Jason ; Wisser, Randall J ; Xu, Wenwei ; Gilmour, A R ; Kaeppler, Shawn M ; De Leon, Natalia ; Holland, James B</creator><contributor>Akhunov, E</contributor><creatorcontrib>Rogers, Anna R ; Dunne, Jeffrey C ; Romay, Cinta ; Bohn, Martin ; Buckler, Edward S ; Ciampitti, Ignacio A ; Edwards, Jode ; Ertl, David ; Flint-Garcia, Sherry ; Gore, Michael A ; Graham, Christopher ; Hirsch, Candice N ; Hood, Elizabeth ; Hooker, David C ; Knoll, Joseph ; Lee, Elizabeth C ; Lorenz, Aaron ; Lynch, Jonathan P ; McKay, John ; Moose, Stephen P ; Murray, Seth C ; Nelson, Rebecca ; Rocheford, Torbert ; Schnable, James C ; Schnable, Patrick S ; Sekhon, Rajandeep ; Singh, Maninder ; Smith, Margaret ; Springer, Nathan ; Thelen, Kurt ; Thomison, Peter ; Thompson, Addie ; Tuinstra, Mitch ; Wallace, Jason ; Wisser, Randall J ; Xu, Wenwei ; Gilmour, A R ; Kaeppler, Shawn M ; De Leon, Natalia ; Holland, James B ; Akhunov, E</creatorcontrib><description>Abstract High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.</description><identifier>ISSN: 2160-1836</identifier><identifier>EISSN: 2160-1836</identifier><identifier>DOI: 10.1093/g3journal/jkaa050</identifier><identifier>PMID: 33585867</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Gene-Environment Interaction ; Genotype ; Investigation ; Models, Genetic ; Phenotype ; Plant Breeding ; Zea mays</subject><ispartof>G3 : genes - genomes - genetics, 2021-02, Vol.11 (2)</ispartof><rights>Published by Oxford University Press on behalf of Genetics Society of America 2021. This work is written by US Government employees and is in the public domain in the US. 2021</rights><rights>Published by Oxford University Press on behalf of Genetics Society of America 2021. This work is written by US Government employees and is in the public domain in the US.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3874-9340b1c155c573315d5dfbfb99267d48e9faf5a5bef945ec3a8a8796161e33a73</citedby><cites>FETCH-LOGICAL-c3874-9340b1c155c573315d5dfbfb99267d48e9faf5a5bef945ec3a8a8796161e33a73</cites><orcidid>0000-0002-5964-1668 ; 0000-0001-6896-8024 ; 0000-0002-7301-4759 ; 0000-0003-3464-0826 ; 0000-0001-9309-1586 ; 0000-0002-4442-6578 ; 0000-0001-6739-5527 ; 0000-0001-9619-5129 ; 0000-0003-2364-6229 ; 0000-0001-6516-4995 ; 0000-0001-9169-5204 ; 0000-0001-7867-9058 ; 0000-0002-5420-2703 ; 0000-0002-4341-9675 ; 0000-0003-1075-0115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022981/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8022981/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/g3journal/jkaa050$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33585867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Akhunov, E</contributor><creatorcontrib>Rogers, Anna R</creatorcontrib><creatorcontrib>Dunne, Jeffrey C</creatorcontrib><creatorcontrib>Romay, Cinta</creatorcontrib><creatorcontrib>Bohn, Martin</creatorcontrib><creatorcontrib>Buckler, Edward S</creatorcontrib><creatorcontrib>Ciampitti, Ignacio A</creatorcontrib><creatorcontrib>Edwards, Jode</creatorcontrib><creatorcontrib>Ertl, David</creatorcontrib><creatorcontrib>Flint-Garcia, Sherry</creatorcontrib><creatorcontrib>Gore, Michael A</creatorcontrib><creatorcontrib>Graham, Christopher</creatorcontrib><creatorcontrib>Hirsch, Candice N</creatorcontrib><creatorcontrib>Hood, Elizabeth</creatorcontrib><creatorcontrib>Hooker, David C</creatorcontrib><creatorcontrib>Knoll, Joseph</creatorcontrib><creatorcontrib>Lee, Elizabeth C</creatorcontrib><creatorcontrib>Lorenz, Aaron</creatorcontrib><creatorcontrib>Lynch, Jonathan P</creatorcontrib><creatorcontrib>McKay, John</creatorcontrib><creatorcontrib>Moose, Stephen P</creatorcontrib><creatorcontrib>Murray, Seth C</creatorcontrib><creatorcontrib>Nelson, Rebecca</creatorcontrib><creatorcontrib>Rocheford, Torbert</creatorcontrib><creatorcontrib>Schnable, James C</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><creatorcontrib>Sekhon, Rajandeep</creatorcontrib><creatorcontrib>Singh, Maninder</creatorcontrib><creatorcontrib>Smith, Margaret</creatorcontrib><creatorcontrib>Springer, Nathan</creatorcontrib><creatorcontrib>Thelen, Kurt</creatorcontrib><creatorcontrib>Thomison, Peter</creatorcontrib><creatorcontrib>Thompson, Addie</creatorcontrib><creatorcontrib>Tuinstra, Mitch</creatorcontrib><creatorcontrib>Wallace, Jason</creatorcontrib><creatorcontrib>Wisser, Randall J</creatorcontrib><creatorcontrib>Xu, Wenwei</creatorcontrib><creatorcontrib>Gilmour, A R</creatorcontrib><creatorcontrib>Kaeppler, Shawn M</creatorcontrib><creatorcontrib>De Leon, Natalia</creatorcontrib><creatorcontrib>Holland, James B</creatorcontrib><title>The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment</title><title>G3 : genes - genomes - genetics</title><addtitle>G3 (Bethesda)</addtitle><description>Abstract High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.</description><subject>Gene-Environment Interaction</subject><subject>Genotype</subject><subject>Investigation</subject><subject>Models, Genetic</subject><subject>Phenotype</subject><subject>Plant Breeding</subject><subject>Zea mays</subject><issn>2160-1836</issn><issn>2160-1836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcFu1DAQjRCIVqUfwAX5yIFQO44d-4KEKihIlbiUszVxJqmXxA52suryGXxxveyyKjd8Gc_Me2-e9IriNaPvGdX8auCbsEYP49XmBwAV9FlxXjFJS6a4fP7kf1ZcprSh-QkhZS1fFmecCyWUbM6L33f3SNw0h7iAt0hCT7owOf-nAd-RAX1YdjOW7a5Ev3Ux-An9QpxfMIJdXPCJBE-GCM6TncOxI1uIDvabjCJARogDlsnCiGRe29FZYkOYM31xWyQTuF9I8CEP3F76VfGihzHh5bFeFN8_f7q7_lLefrv5ev3xtrRcNXWpeU1bZpkQVjScM9GJrm_7VutKNl2tUPfQCxAt9roWaDkoUI2WTDLkHBp-UXw46GZPE3Y2n44wmjm7gLgzAZz5d-PdvRnC1ihaVVqxLPD2KBDDzxXTYiaXLI4jeAxrMlWttNCNFDRD2QFqY0gpYn86w6jZx2lOcZpjnJnz5qm_E-NveBnw7gAI6_wfeo8UOrMu</recordid><startdate>20210209</startdate><enddate>20210209</enddate><creator>Rogers, Anna R</creator><creator>Dunne, Jeffrey C</creator><creator>Romay, Cinta</creator><creator>Bohn, Martin</creator><creator>Buckler, Edward S</creator><creator>Ciampitti, Ignacio A</creator><creator>Edwards, Jode</creator><creator>Ertl, David</creator><creator>Flint-Garcia, Sherry</creator><creator>Gore, Michael A</creator><creator>Graham, Christopher</creator><creator>Hirsch, Candice N</creator><creator>Hood, Elizabeth</creator><creator>Hooker, David C</creator><creator>Knoll, Joseph</creator><creator>Lee, Elizabeth C</creator><creator>Lorenz, Aaron</creator><creator>Lynch, Jonathan P</creator><creator>McKay, John</creator><creator>Moose, Stephen P</creator><creator>Murray, Seth C</creator><creator>Nelson, Rebecca</creator><creator>Rocheford, Torbert</creator><creator>Schnable, James C</creator><creator>Schnable, Patrick S</creator><creator>Sekhon, Rajandeep</creator><creator>Singh, Maninder</creator><creator>Smith, Margaret</creator><creator>Springer, Nathan</creator><creator>Thelen, Kurt</creator><creator>Thomison, Peter</creator><creator>Thompson, Addie</creator><creator>Tuinstra, Mitch</creator><creator>Wallace, Jason</creator><creator>Wisser, Randall J</creator><creator>Xu, Wenwei</creator><creator>Gilmour, A R</creator><creator>Kaeppler, Shawn M</creator><creator>De Leon, Natalia</creator><creator>Holland, James B</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5964-1668</orcidid><orcidid>https://orcid.org/0000-0001-6896-8024</orcidid><orcidid>https://orcid.org/0000-0002-7301-4759</orcidid><orcidid>https://orcid.org/0000-0003-3464-0826</orcidid><orcidid>https://orcid.org/0000-0001-9309-1586</orcidid><orcidid>https://orcid.org/0000-0002-4442-6578</orcidid><orcidid>https://orcid.org/0000-0001-6739-5527</orcidid><orcidid>https://orcid.org/0000-0001-9619-5129</orcidid><orcidid>https://orcid.org/0000-0003-2364-6229</orcidid><orcidid>https://orcid.org/0000-0001-6516-4995</orcidid><orcidid>https://orcid.org/0000-0001-9169-5204</orcidid><orcidid>https://orcid.org/0000-0001-7867-9058</orcidid><orcidid>https://orcid.org/0000-0002-5420-2703</orcidid><orcidid>https://orcid.org/0000-0002-4341-9675</orcidid><orcidid>https://orcid.org/0000-0003-1075-0115</orcidid></search><sort><creationdate>20210209</creationdate><title>The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment</title><author>Rogers, Anna R ; Dunne, Jeffrey C ; Romay, Cinta ; Bohn, Martin ; Buckler, Edward S ; Ciampitti, Ignacio A ; Edwards, Jode ; Ertl, David ; Flint-Garcia, Sherry ; Gore, Michael A ; Graham, Christopher ; Hirsch, Candice N ; Hood, Elizabeth ; Hooker, David C ; Knoll, Joseph ; Lee, Elizabeth C ; Lorenz, Aaron ; Lynch, Jonathan P ; McKay, John ; Moose, Stephen P ; Murray, Seth C ; Nelson, Rebecca ; Rocheford, Torbert ; Schnable, James C ; Schnable, Patrick S ; Sekhon, Rajandeep ; Singh, Maninder ; Smith, Margaret ; Springer, Nathan ; Thelen, Kurt ; Thomison, Peter ; Thompson, Addie ; Tuinstra, Mitch ; Wallace, Jason ; Wisser, Randall J ; Xu, Wenwei ; Gilmour, A R ; Kaeppler, Shawn M ; De Leon, Natalia ; Holland, James B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3874-9340b1c155c573315d5dfbfb99267d48e9faf5a5bef945ec3a8a8796161e33a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Gene-Environment Interaction</topic><topic>Genotype</topic><topic>Investigation</topic><topic>Models, Genetic</topic><topic>Phenotype</topic><topic>Plant Breeding</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rogers, Anna R</creatorcontrib><creatorcontrib>Dunne, Jeffrey C</creatorcontrib><creatorcontrib>Romay, Cinta</creatorcontrib><creatorcontrib>Bohn, Martin</creatorcontrib><creatorcontrib>Buckler, Edward S</creatorcontrib><creatorcontrib>Ciampitti, Ignacio A</creatorcontrib><creatorcontrib>Edwards, Jode</creatorcontrib><creatorcontrib>Ertl, David</creatorcontrib><creatorcontrib>Flint-Garcia, Sherry</creatorcontrib><creatorcontrib>Gore, Michael A</creatorcontrib><creatorcontrib>Graham, Christopher</creatorcontrib><creatorcontrib>Hirsch, Candice N</creatorcontrib><creatorcontrib>Hood, Elizabeth</creatorcontrib><creatorcontrib>Hooker, David C</creatorcontrib><creatorcontrib>Knoll, Joseph</creatorcontrib><creatorcontrib>Lee, Elizabeth C</creatorcontrib><creatorcontrib>Lorenz, Aaron</creatorcontrib><creatorcontrib>Lynch, Jonathan P</creatorcontrib><creatorcontrib>McKay, John</creatorcontrib><creatorcontrib>Moose, Stephen P</creatorcontrib><creatorcontrib>Murray, Seth C</creatorcontrib><creatorcontrib>Nelson, Rebecca</creatorcontrib><creatorcontrib>Rocheford, Torbert</creatorcontrib><creatorcontrib>Schnable, James C</creatorcontrib><creatorcontrib>Schnable, Patrick S</creatorcontrib><creatorcontrib>Sekhon, Rajandeep</creatorcontrib><creatorcontrib>Singh, Maninder</creatorcontrib><creatorcontrib>Smith, Margaret</creatorcontrib><creatorcontrib>Springer, Nathan</creatorcontrib><creatorcontrib>Thelen, Kurt</creatorcontrib><creatorcontrib>Thomison, Peter</creatorcontrib><creatorcontrib>Thompson, Addie</creatorcontrib><creatorcontrib>Tuinstra, Mitch</creatorcontrib><creatorcontrib>Wallace, Jason</creatorcontrib><creatorcontrib>Wisser, Randall J</creatorcontrib><creatorcontrib>Xu, Wenwei</creatorcontrib><creatorcontrib>Gilmour, A R</creatorcontrib><creatorcontrib>Kaeppler, Shawn M</creatorcontrib><creatorcontrib>De Leon, Natalia</creatorcontrib><creatorcontrib>Holland, James B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>G3 : genes - genomes - genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rogers, Anna R</au><au>Dunne, Jeffrey C</au><au>Romay, Cinta</au><au>Bohn, Martin</au><au>Buckler, Edward S</au><au>Ciampitti, Ignacio A</au><au>Edwards, Jode</au><au>Ertl, David</au><au>Flint-Garcia, Sherry</au><au>Gore, Michael A</au><au>Graham, Christopher</au><au>Hirsch, Candice N</au><au>Hood, Elizabeth</au><au>Hooker, David C</au><au>Knoll, Joseph</au><au>Lee, Elizabeth C</au><au>Lorenz, Aaron</au><au>Lynch, Jonathan P</au><au>McKay, John</au><au>Moose, Stephen P</au><au>Murray, Seth C</au><au>Nelson, Rebecca</au><au>Rocheford, Torbert</au><au>Schnable, James C</au><au>Schnable, Patrick S</au><au>Sekhon, Rajandeep</au><au>Singh, Maninder</au><au>Smith, Margaret</au><au>Springer, Nathan</au><au>Thelen, Kurt</au><au>Thomison, Peter</au><au>Thompson, Addie</au><au>Tuinstra, Mitch</au><au>Wallace, Jason</au><au>Wisser, Randall J</au><au>Xu, Wenwei</au><au>Gilmour, A R</au><au>Kaeppler, Shawn M</au><au>De Leon, Natalia</au><au>Holland, James B</au><au>Akhunov, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment</atitle><jtitle>G3 : genes - genomes - genetics</jtitle><addtitle>G3 (Bethesda)</addtitle><date>2021-02-09</date><risdate>2021</risdate><volume>11</volume><issue>2</issue><issn>2160-1836</issn><eissn>2160-1836</eissn><abstract>Abstract High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33585867</pmid><doi>10.1093/g3journal/jkaa050</doi><orcidid>https://orcid.org/0000-0002-5964-1668</orcidid><orcidid>https://orcid.org/0000-0001-6896-8024</orcidid><orcidid>https://orcid.org/0000-0002-7301-4759</orcidid><orcidid>https://orcid.org/0000-0003-3464-0826</orcidid><orcidid>https://orcid.org/0000-0001-9309-1586</orcidid><orcidid>https://orcid.org/0000-0002-4442-6578</orcidid><orcidid>https://orcid.org/0000-0001-6739-5527</orcidid><orcidid>https://orcid.org/0000-0001-9619-5129</orcidid><orcidid>https://orcid.org/0000-0003-2364-6229</orcidid><orcidid>https://orcid.org/0000-0001-6516-4995</orcidid><orcidid>https://orcid.org/0000-0001-9169-5204</orcidid><orcidid>https://orcid.org/0000-0001-7867-9058</orcidid><orcidid>https://orcid.org/0000-0002-5420-2703</orcidid><orcidid>https://orcid.org/0000-0002-4341-9675</orcidid><orcidid>https://orcid.org/0000-0003-1075-0115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-1836
ispartof G3 : genes - genomes - genetics, 2021-02, Vol.11 (2)
issn 2160-1836
2160-1836
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022981
source Access via Oxford University Press (Open Access Collection)
subjects Gene-Environment Interaction
Genotype
Investigation
Models, Genetic
Phenotype
Plant Breeding
Zea mays
title The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20importance%20of%20dominance%20and%20genotype-by-environment%20interactions%20on%20grain%20yield%20variation%20in%20a%20large-scale%20public%20cooperative%20maize%20experiment&rft.jtitle=G3%20:%20genes%20-%20genomes%20-%20genetics&rft.au=Rogers,%20Anna%20R&rft.date=2021-02-09&rft.volume=11&rft.issue=2&rft.issn=2160-1836&rft.eissn=2160-1836&rft_id=info:doi/10.1093/g3journal/jkaa050&rft_dat=%3Cproquest_TOX%3E2489597650%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2489597650&rft_id=info:pmid/33585867&rft_oup_id=10.1093/g3journal/jkaa050&rfr_iscdi=true