A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis
• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using muta...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2021-03, Vol.229 (5), p.2812-2826 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2826 |
---|---|
container_issue | 5 |
container_start_page | 2812 |
container_title | The New phytologist |
container_volume | 229 |
creator | Hewitt, Tim Müller, Marion C. Molnár, István Mascher, Martin Holušová, Kateřina Šimková, Hana Kunz, Lukas Zhang, Jianping Li, Jianbo Bhatt, Dhara Sharma, Raghvendra Schudel, Seraina Yu, Guotai Steuernagel, Burkhard Periyannan, Sambasivam Wulff, Brande Ayliffe, Mick McIntosh, Robert Keller, Beat Lagudah, Evans Zhang, Peng |
description | • Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination.
• A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens.
• A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana.
• Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster. |
doi_str_mv | 10.1111/nph.17075 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27001359</jstor_id><sourcerecordid>27001359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAOALHHikNZ24ji5IC1VoUgr6IFKvVleZ5x4ldjBTlptX4ZXxdvdruCAL5bl7_9mNIPQW0rOaDrnbuzOqCCCP0MLWpR1VtFcPEcLQliVlUV5e4JexbghhNS8ZC_RSZ5TURJCF-j3Ene27fotbqwxEMBNVk3Q4ACt9Q57g-87UBPWXfCDj34ALJYrDE77BiJW-HqgCtthmB2kkIZx8gFPXYqkl2-dfUiYnSLWPgSIo3eNdS1e3oXHJKSqehcxyY8_9_MAwSrcBjVYZ-Nr9MKoPsKbw32Kbr5c_ry4ylY_vn67WK4yXZScZ9w0WlPKdKGqkuuKVqAo46wWlWLcaLoWoNea6iJvOGhTAFSGaqVE3eQ1qPwUfdp7x3k9QKPTHILq5RjsoMJWemXlvz_OdrL1d7IijPGaJsGHgyD4XzPESW78HFzqWbKi4gU5UB_3lA4-xgDmWIESudulTLuUj7tM7Pu_WzqST8tLwPkeuLc9bP9vkt-vr56U7_aJTUwjPyaY2Ol4nf8B_sm3SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485402591</pqid></control><display><type>article</type><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</creator><creatorcontrib>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</creatorcontrib><description>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination.
• A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens.
• A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana.
• Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17075</identifier><identifier>PMID: 33176001</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Airborne microorganisms ; Ascomycota - genetics ; AvrPm effectors ; Bgt ; Blumeria graminis ; Blumeria graminis f. sp. tritici ; Chromosome 7 ; Chromosome rearrangements ; chromosome sequencing ; Chromosomes ; Cloning ; Disease Resistance - genetics ; EMS mutagenesis ; Gene expression ; Gene sequencing ; Genetic transformation ; Genomes ; Hypersensitive response ; Identification ; Leucine ; Mutagenesis ; NLR ; Nucleic acids ; Nucleotides ; Pathogens ; Phenotypes ; Plant Diseases - genetics ; Powdery mildew ; Receptors ; Recombination ; Ribonucleic acid ; RNA ; RNA sequencing ; Sequencing ; Transgenic plants ; Triticum - genetics ; Triticum aestivum ; Wheat</subject><ispartof>The New phytologist, 2021-03, Vol.229 (5), p.2812-2826</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Authors. © 2020 New Phytologist Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</citedby><cites>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</cites><orcidid>0000-0002-6234-1789 ; 0000-0001-6373-6013 ; 0000-0002-4888-7216 ; 0000-0002-5421-2872 ; 0000-0003-3999-843X ; 0000-0003-4044-4346 ; 0000-0002-1078-8319 ; 0000-0002-4191-1068 ; 0000-0002-7612-6932 ; 0000-0003-2379-9225 ; 0000-0001-5594-2319 ; 0000-0002-4268-9657 ; 0000-0002-4531-7170 ; 0000-0002-8284-7728 ; 0000-0002-7167-9319 ; 0000-0003-4159-7619 ; 0000-0003-2488-5723 ; 0000-0002-8155-5408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17075$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17075$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33176001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hewitt, Tim</creatorcontrib><creatorcontrib>Müller, Marion C.</creatorcontrib><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Holušová, Kateřina</creatorcontrib><creatorcontrib>Šimková, Hana</creatorcontrib><creatorcontrib>Kunz, Lukas</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Bhatt, Dhara</creatorcontrib><creatorcontrib>Sharma, Raghvendra</creatorcontrib><creatorcontrib>Schudel, Seraina</creatorcontrib><creatorcontrib>Yu, Guotai</creatorcontrib><creatorcontrib>Steuernagel, Burkhard</creatorcontrib><creatorcontrib>Periyannan, Sambasivam</creatorcontrib><creatorcontrib>Wulff, Brande</creatorcontrib><creatorcontrib>Ayliffe, Mick</creatorcontrib><creatorcontrib>McIntosh, Robert</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Lagudah, Evans</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination.
• A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens.
• A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana.
• Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</description><subject>Airborne microorganisms</subject><subject>Ascomycota - genetics</subject><subject>AvrPm effectors</subject><subject>Bgt</subject><subject>Blumeria graminis</subject><subject>Blumeria graminis f. sp. tritici</subject><subject>Chromosome 7</subject><subject>Chromosome rearrangements</subject><subject>chromosome sequencing</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Disease Resistance - genetics</subject><subject>EMS mutagenesis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic transformation</subject><subject>Genomes</subject><subject>Hypersensitive response</subject><subject>Identification</subject><subject>Leucine</subject><subject>Mutagenesis</subject><subject>NLR</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Plant Diseases - genetics</subject><subject>Powdery mildew</subject><subject>Receptors</subject><subject>Recombination</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Sequencing</subject><subject>Transgenic plants</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAOALHHikNZ24ji5IC1VoUgr6IFKvVleZ5x4ldjBTlptX4ZXxdvdruCAL5bl7_9mNIPQW0rOaDrnbuzOqCCCP0MLWpR1VtFcPEcLQliVlUV5e4JexbghhNS8ZC_RSZ5TURJCF-j3Ene27fotbqwxEMBNVk3Q4ACt9Q57g-87UBPWXfCDj34ALJYrDE77BiJW-HqgCtthmB2kkIZx8gFPXYqkl2-dfUiYnSLWPgSIo3eNdS1e3oXHJKSqehcxyY8_9_MAwSrcBjVYZ-Nr9MKoPsKbw32Kbr5c_ry4ylY_vn67WK4yXZScZ9w0WlPKdKGqkuuKVqAo46wWlWLcaLoWoNea6iJvOGhTAFSGaqVE3eQ1qPwUfdp7x3k9QKPTHILq5RjsoMJWemXlvz_OdrL1d7IijPGaJsGHgyD4XzPESW78HFzqWbKi4gU5UB_3lA4-xgDmWIESudulTLuUj7tM7Pu_WzqST8tLwPkeuLc9bP9vkt-vr56U7_aJTUwjPyaY2Ol4nf8B_sm3SQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Hewitt, Tim</creator><creator>Müller, Marion C.</creator><creator>Molnár, István</creator><creator>Mascher, Martin</creator><creator>Holušová, Kateřina</creator><creator>Šimková, Hana</creator><creator>Kunz, Lukas</creator><creator>Zhang, Jianping</creator><creator>Li, Jianbo</creator><creator>Bhatt, Dhara</creator><creator>Sharma, Raghvendra</creator><creator>Schudel, Seraina</creator><creator>Yu, Guotai</creator><creator>Steuernagel, Burkhard</creator><creator>Periyannan, Sambasivam</creator><creator>Wulff, Brande</creator><creator>Ayliffe, Mick</creator><creator>McIntosh, Robert</creator><creator>Keller, Beat</creator><creator>Lagudah, Evans</creator><creator>Zhang, Peng</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6234-1789</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid><orcidid>https://orcid.org/0000-0002-4888-7216</orcidid><orcidid>https://orcid.org/0000-0002-5421-2872</orcidid><orcidid>https://orcid.org/0000-0003-3999-843X</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-1078-8319</orcidid><orcidid>https://orcid.org/0000-0002-4191-1068</orcidid><orcidid>https://orcid.org/0000-0002-7612-6932</orcidid><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0001-5594-2319</orcidid><orcidid>https://orcid.org/0000-0002-4268-9657</orcidid><orcidid>https://orcid.org/0000-0002-4531-7170</orcidid><orcidid>https://orcid.org/0000-0002-8284-7728</orcidid><orcidid>https://orcid.org/0000-0002-7167-9319</orcidid><orcidid>https://orcid.org/0000-0003-4159-7619</orcidid><orcidid>https://orcid.org/0000-0003-2488-5723</orcidid><orcidid>https://orcid.org/0000-0002-8155-5408</orcidid></search><sort><creationdate>202103</creationdate><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><author>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne microorganisms</topic><topic>Ascomycota - genetics</topic><topic>AvrPm effectors</topic><topic>Bgt</topic><topic>Blumeria graminis</topic><topic>Blumeria graminis f. sp. tritici</topic><topic>Chromosome 7</topic><topic>Chromosome rearrangements</topic><topic>chromosome sequencing</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Disease Resistance - genetics</topic><topic>EMS mutagenesis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic transformation</topic><topic>Genomes</topic><topic>Hypersensitive response</topic><topic>Identification</topic><topic>Leucine</topic><topic>Mutagenesis</topic><topic>NLR</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Plant Diseases - genetics</topic><topic>Powdery mildew</topic><topic>Receptors</topic><topic>Recombination</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Sequencing</topic><topic>Transgenic plants</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewitt, Tim</creatorcontrib><creatorcontrib>Müller, Marion C.</creatorcontrib><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Holušová, Kateřina</creatorcontrib><creatorcontrib>Šimková, Hana</creatorcontrib><creatorcontrib>Kunz, Lukas</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Bhatt, Dhara</creatorcontrib><creatorcontrib>Sharma, Raghvendra</creatorcontrib><creatorcontrib>Schudel, Seraina</creatorcontrib><creatorcontrib>Yu, Guotai</creatorcontrib><creatorcontrib>Steuernagel, Burkhard</creatorcontrib><creatorcontrib>Periyannan, Sambasivam</creatorcontrib><creatorcontrib>Wulff, Brande</creatorcontrib><creatorcontrib>Ayliffe, Mick</creatorcontrib><creatorcontrib>McIntosh, Robert</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Lagudah, Evans</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewitt, Tim</au><au>Müller, Marion C.</au><au>Molnár, István</au><au>Mascher, Martin</au><au>Holušová, Kateřina</au><au>Šimková, Hana</au><au>Kunz, Lukas</au><au>Zhang, Jianping</au><au>Li, Jianbo</au><au>Bhatt, Dhara</au><au>Sharma, Raghvendra</au><au>Schudel, Seraina</au><au>Yu, Guotai</au><au>Steuernagel, Burkhard</au><au>Periyannan, Sambasivam</au><au>Wulff, Brande</au><au>Ayliffe, Mick</au><au>McIntosh, Robert</au><au>Keller, Beat</au><au>Lagudah, Evans</au><au>Zhang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>229</volume><issue>5</issue><spage>2812</spage><epage>2826</epage><pages>2812-2826</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination.
• A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens.
• A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana.
• Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33176001</pmid><doi>10.1111/nph.17075</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6234-1789</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid><orcidid>https://orcid.org/0000-0002-4888-7216</orcidid><orcidid>https://orcid.org/0000-0002-5421-2872</orcidid><orcidid>https://orcid.org/0000-0003-3999-843X</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-1078-8319</orcidid><orcidid>https://orcid.org/0000-0002-4191-1068</orcidid><orcidid>https://orcid.org/0000-0002-7612-6932</orcidid><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0001-5594-2319</orcidid><orcidid>https://orcid.org/0000-0002-4268-9657</orcidid><orcidid>https://orcid.org/0000-0002-4531-7170</orcidid><orcidid>https://orcid.org/0000-0002-8284-7728</orcidid><orcidid>https://orcid.org/0000-0002-7167-9319</orcidid><orcidid>https://orcid.org/0000-0003-4159-7619</orcidid><orcidid>https://orcid.org/0000-0003-2488-5723</orcidid><orcidid>https://orcid.org/0000-0002-8155-5408</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2021-03, Vol.229 (5), p.2812-2826 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022591 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Airborne microorganisms Ascomycota - genetics AvrPm effectors Bgt Blumeria graminis Blumeria graminis f. sp. tritici Chromosome 7 Chromosome rearrangements chromosome sequencing Chromosomes Cloning Disease Resistance - genetics EMS mutagenesis Gene expression Gene sequencing Genetic transformation Genomes Hypersensitive response Identification Leucine Mutagenesis NLR Nucleic acids Nucleotides Pathogens Phenotypes Plant Diseases - genetics Powdery mildew Receptors Recombination Ribonucleic acid RNA RNA sequencing Sequencing Transgenic plants Triticum - genetics Triticum aestivum Wheat |
title | A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20differentiated%20region%20of%20wheat%20chromosome%207AL%20encodes%20a%20Pm1a%20immune%20receptor%20that%20recognizes%20its%20corresponding%20AvrPm1a%20effector%20from%20Blumeria%20graminis&rft.jtitle=The%20New%20phytologist&rft.au=Hewitt,%20Tim&rft.date=2021-03&rft.volume=229&rft.issue=5&rft.spage=2812&rft.epage=2826&rft.pages=2812-2826&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17075&rft_dat=%3Cjstor_pubme%3E27001359%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485402591&rft_id=info:pmid/33176001&rft_jstor_id=27001359&rfr_iscdi=true |