A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis

• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using muta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2021-03, Vol.229 (5), p.2812-2826
Hauptverfasser: Hewitt, Tim, Müller, Marion C., Molnár, István, Mascher, Martin, Holušová, Kateřina, Šimková, Hana, Kunz, Lukas, Zhang, Jianping, Li, Jianbo, Bhatt, Dhara, Sharma, Raghvendra, Schudel, Seraina, Yu, Guotai, Steuernagel, Burkhard, Periyannan, Sambasivam, Wulff, Brande, Ayliffe, Mick, McIntosh, Robert, Keller, Beat, Lagudah, Evans, Zhang, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2826
container_issue 5
container_start_page 2812
container_title The New phytologist
container_volume 229
creator Hewitt, Tim
Müller, Marion C.
Molnár, István
Mascher, Martin
Holušová, Kateřina
Šimková, Hana
Kunz, Lukas
Zhang, Jianping
Li, Jianbo
Bhatt, Dhara
Sharma, Raghvendra
Schudel, Seraina
Yu, Guotai
Steuernagel, Burkhard
Periyannan, Sambasivam
Wulff, Brande
Ayliffe, Mick
McIntosh, Robert
Keller, Beat
Lagudah, Evans
Zhang, Peng
description • Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. • A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. • Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.
doi_str_mv 10.1111/nph.17075
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27001359</jstor_id><sourcerecordid>27001359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhi0EokvhwAOALHHikNZ24ji5IC1VoUgr6IFKvVleZ5x4ldjBTlptX4ZXxdvdruCAL5bl7_9mNIPQW0rOaDrnbuzOqCCCP0MLWpR1VtFcPEcLQliVlUV5e4JexbghhNS8ZC_RSZ5TURJCF-j3Ene27fotbqwxEMBNVk3Q4ACt9Q57g-87UBPWXfCDj34ALJYrDE77BiJW-HqgCtthmB2kkIZx8gFPXYqkl2-dfUiYnSLWPgSIo3eNdS1e3oXHJKSqehcxyY8_9_MAwSrcBjVYZ-Nr9MKoPsKbw32Kbr5c_ry4ylY_vn67WK4yXZScZ9w0WlPKdKGqkuuKVqAo46wWlWLcaLoWoNea6iJvOGhTAFSGaqVE3eQ1qPwUfdp7x3k9QKPTHILq5RjsoMJWemXlvz_OdrL1d7IijPGaJsGHgyD4XzPESW78HFzqWbKi4gU5UB_3lA4-xgDmWIESudulTLuUj7tM7Pu_WzqST8tLwPkeuLc9bP9vkt-vr56U7_aJTUwjPyaY2Ol4nf8B_sm3SQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485402591</pqid></control><display><type>article</type><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</creator><creatorcontrib>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</creatorcontrib><description>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. • A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. • Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.17075</identifier><identifier>PMID: 33176001</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Airborne microorganisms ; Ascomycota - genetics ; AvrPm effectors ; Bgt ; Blumeria graminis ; Blumeria graminis f. sp. tritici ; Chromosome 7 ; Chromosome rearrangements ; chromosome sequencing ; Chromosomes ; Cloning ; Disease Resistance - genetics ; EMS mutagenesis ; Gene expression ; Gene sequencing ; Genetic transformation ; Genomes ; Hypersensitive response ; Identification ; Leucine ; Mutagenesis ; NLR ; Nucleic acids ; Nucleotides ; Pathogens ; Phenotypes ; Plant Diseases - genetics ; Powdery mildew ; Receptors ; Recombination ; Ribonucleic acid ; RNA ; RNA sequencing ; Sequencing ; Transgenic plants ; Triticum - genetics ; Triticum aestivum ; Wheat</subject><ispartof>The New phytologist, 2021-03, Vol.229 (5), p.2812-2826</ispartof><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors © 2020 New Phytologist Foundation</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Foundation.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 The Authors. © 2020 New Phytologist Foundation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</citedby><cites>FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</cites><orcidid>0000-0002-6234-1789 ; 0000-0001-6373-6013 ; 0000-0002-4888-7216 ; 0000-0002-5421-2872 ; 0000-0003-3999-843X ; 0000-0003-4044-4346 ; 0000-0002-1078-8319 ; 0000-0002-4191-1068 ; 0000-0002-7612-6932 ; 0000-0003-2379-9225 ; 0000-0001-5594-2319 ; 0000-0002-4268-9657 ; 0000-0002-4531-7170 ; 0000-0002-8284-7728 ; 0000-0002-7167-9319 ; 0000-0003-4159-7619 ; 0000-0003-2488-5723 ; 0000-0002-8155-5408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.17075$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.17075$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33176001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hewitt, Tim</creatorcontrib><creatorcontrib>Müller, Marion C.</creatorcontrib><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Holušová, Kateřina</creatorcontrib><creatorcontrib>Šimková, Hana</creatorcontrib><creatorcontrib>Kunz, Lukas</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Bhatt, Dhara</creatorcontrib><creatorcontrib>Sharma, Raghvendra</creatorcontrib><creatorcontrib>Schudel, Seraina</creatorcontrib><creatorcontrib>Yu, Guotai</creatorcontrib><creatorcontrib>Steuernagel, Burkhard</creatorcontrib><creatorcontrib>Periyannan, Sambasivam</creatorcontrib><creatorcontrib>Wulff, Brande</creatorcontrib><creatorcontrib>Ayliffe, Mick</creatorcontrib><creatorcontrib>McIntosh, Robert</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Lagudah, Evans</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. • A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. • Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</description><subject>Airborne microorganisms</subject><subject>Ascomycota - genetics</subject><subject>AvrPm effectors</subject><subject>Bgt</subject><subject>Blumeria graminis</subject><subject>Blumeria graminis f. sp. tritici</subject><subject>Chromosome 7</subject><subject>Chromosome rearrangements</subject><subject>chromosome sequencing</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Disease Resistance - genetics</subject><subject>EMS mutagenesis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic transformation</subject><subject>Genomes</subject><subject>Hypersensitive response</subject><subject>Identification</subject><subject>Leucine</subject><subject>Mutagenesis</subject><subject>NLR</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Pathogens</subject><subject>Phenotypes</subject><subject>Plant Diseases - genetics</subject><subject>Powdery mildew</subject><subject>Receptors</subject><subject>Recombination</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Sequencing</subject><subject>Transgenic plants</subject><subject>Triticum - genetics</subject><subject>Triticum aestivum</subject><subject>Wheat</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAQhi0EokvhwAOALHHikNZ24ji5IC1VoUgr6IFKvVleZ5x4ldjBTlptX4ZXxdvdruCAL5bl7_9mNIPQW0rOaDrnbuzOqCCCP0MLWpR1VtFcPEcLQliVlUV5e4JexbghhNS8ZC_RSZ5TURJCF-j3Ene27fotbqwxEMBNVk3Q4ACt9Q57g-87UBPWXfCDj34ALJYrDE77BiJW-HqgCtthmB2kkIZx8gFPXYqkl2-dfUiYnSLWPgSIo3eNdS1e3oXHJKSqehcxyY8_9_MAwSrcBjVYZ-Nr9MKoPsKbw32Kbr5c_ry4ylY_vn67WK4yXZScZ9w0WlPKdKGqkuuKVqAo46wWlWLcaLoWoNea6iJvOGhTAFSGaqVE3eQ1qPwUfdp7x3k9QKPTHILq5RjsoMJWemXlvz_OdrL1d7IijPGaJsGHgyD4XzPESW78HFzqWbKi4gU5UB_3lA4-xgDmWIESudulTLuUj7tM7Pu_WzqST8tLwPkeuLc9bP9vkt-vr56U7_aJTUwjPyaY2Ol4nf8B_sm3SQ</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Hewitt, Tim</creator><creator>Müller, Marion C.</creator><creator>Molnár, István</creator><creator>Mascher, Martin</creator><creator>Holušová, Kateřina</creator><creator>Šimková, Hana</creator><creator>Kunz, Lukas</creator><creator>Zhang, Jianping</creator><creator>Li, Jianbo</creator><creator>Bhatt, Dhara</creator><creator>Sharma, Raghvendra</creator><creator>Schudel, Seraina</creator><creator>Yu, Guotai</creator><creator>Steuernagel, Burkhard</creator><creator>Periyannan, Sambasivam</creator><creator>Wulff, Brande</creator><creator>Ayliffe, Mick</creator><creator>McIntosh, Robert</creator><creator>Keller, Beat</creator><creator>Lagudah, Evans</creator><creator>Zhang, Peng</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6234-1789</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid><orcidid>https://orcid.org/0000-0002-4888-7216</orcidid><orcidid>https://orcid.org/0000-0002-5421-2872</orcidid><orcidid>https://orcid.org/0000-0003-3999-843X</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-1078-8319</orcidid><orcidid>https://orcid.org/0000-0002-4191-1068</orcidid><orcidid>https://orcid.org/0000-0002-7612-6932</orcidid><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0001-5594-2319</orcidid><orcidid>https://orcid.org/0000-0002-4268-9657</orcidid><orcidid>https://orcid.org/0000-0002-4531-7170</orcidid><orcidid>https://orcid.org/0000-0002-8284-7728</orcidid><orcidid>https://orcid.org/0000-0002-7167-9319</orcidid><orcidid>https://orcid.org/0000-0003-4159-7619</orcidid><orcidid>https://orcid.org/0000-0003-2488-5723</orcidid><orcidid>https://orcid.org/0000-0002-8155-5408</orcidid></search><sort><creationdate>202103</creationdate><title>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</title><author>Hewitt, Tim ; Müller, Marion C. ; Molnár, István ; Mascher, Martin ; Holušová, Kateřina ; Šimková, Hana ; Kunz, Lukas ; Zhang, Jianping ; Li, Jianbo ; Bhatt, Dhara ; Sharma, Raghvendra ; Schudel, Seraina ; Yu, Guotai ; Steuernagel, Burkhard ; Periyannan, Sambasivam ; Wulff, Brande ; Ayliffe, Mick ; McIntosh, Robert ; Keller, Beat ; Lagudah, Evans ; Zhang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4655-5fdcc112c4a865c818ea1252978a25fc1b7ecbc1c43d5ecf4ee8f1caa79d39ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Airborne microorganisms</topic><topic>Ascomycota - genetics</topic><topic>AvrPm effectors</topic><topic>Bgt</topic><topic>Blumeria graminis</topic><topic>Blumeria graminis f. sp. tritici</topic><topic>Chromosome 7</topic><topic>Chromosome rearrangements</topic><topic>chromosome sequencing</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Disease Resistance - genetics</topic><topic>EMS mutagenesis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic transformation</topic><topic>Genomes</topic><topic>Hypersensitive response</topic><topic>Identification</topic><topic>Leucine</topic><topic>Mutagenesis</topic><topic>NLR</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Pathogens</topic><topic>Phenotypes</topic><topic>Plant Diseases - genetics</topic><topic>Powdery mildew</topic><topic>Receptors</topic><topic>Recombination</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Sequencing</topic><topic>Transgenic plants</topic><topic>Triticum - genetics</topic><topic>Triticum aestivum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hewitt, Tim</creatorcontrib><creatorcontrib>Müller, Marion C.</creatorcontrib><creatorcontrib>Molnár, István</creatorcontrib><creatorcontrib>Mascher, Martin</creatorcontrib><creatorcontrib>Holušová, Kateřina</creatorcontrib><creatorcontrib>Šimková, Hana</creatorcontrib><creatorcontrib>Kunz, Lukas</creatorcontrib><creatorcontrib>Zhang, Jianping</creatorcontrib><creatorcontrib>Li, Jianbo</creatorcontrib><creatorcontrib>Bhatt, Dhara</creatorcontrib><creatorcontrib>Sharma, Raghvendra</creatorcontrib><creatorcontrib>Schudel, Seraina</creatorcontrib><creatorcontrib>Yu, Guotai</creatorcontrib><creatorcontrib>Steuernagel, Burkhard</creatorcontrib><creatorcontrib>Periyannan, Sambasivam</creatorcontrib><creatorcontrib>Wulff, Brande</creatorcontrib><creatorcontrib>Ayliffe, Mick</creatorcontrib><creatorcontrib>McIntosh, Robert</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Lagudah, Evans</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hewitt, Tim</au><au>Müller, Marion C.</au><au>Molnár, István</au><au>Mascher, Martin</au><au>Holušová, Kateřina</au><au>Šimková, Hana</au><au>Kunz, Lukas</au><au>Zhang, Jianping</au><au>Li, Jianbo</au><au>Bhatt, Dhara</au><au>Sharma, Raghvendra</au><au>Schudel, Seraina</au><au>Yu, Guotai</au><au>Steuernagel, Burkhard</au><au>Periyannan, Sambasivam</au><au>Wulff, Brande</au><au>Ayliffe, Mick</au><au>McIntosh, Robert</au><au>Keller, Beat</au><au>Lagudah, Evans</au><au>Zhang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>229</volume><issue>5</issue><spage>2812</spage><epage>2826</epage><pages>2812-2826</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Pm1a, the first powdery mildew resistance gene described in wheat, is part of a complex resistance (R) gene cluster located in a distal region of chromosome 7AL that has suppressed genetic recombination. • A nucleotide-binding, leucine-rich repeat (NLR) immune receptor gene was isolated using mutagenesis and R gene enrichment sequencing (MutRenSeq). Stable transformation confirmed Pm1a identity which induced a strong resistance phenotype in transgenic plants upon challenge with avirulent Blumeria graminis (wheat powdery mildew) pathogens. • A high-density genetic map of a B. graminis family segregating for Pm1a avirulence combined with pathogen genome resequencing and RNA sequencing (RNAseq) identified AvrPm1a effector gene candidates. In planta expression identified an effector, with an N terminal Y/FxC motif, that induced a strong hypersensitive response when co-expressed with Pm1a in Nicotiana benthamiana. • Single chromosome enrichment sequencing (ChromSeq) and assembly of chromosome 7A suggested that suppressed recombination around the Pm1a region was due to a rearrangement involving chromosomes 7A, 7B and 7D. The cloning of Pm1a and its identification in a highly rearranged region of chromosome 7A provides insight into the role of chromosomal rearrangements in the evolution of this complex resistance cluster.</abstract><cop>England</cop><pub>Wiley</pub><pmid>33176001</pmid><doi>10.1111/nph.17075</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6234-1789</orcidid><orcidid>https://orcid.org/0000-0001-6373-6013</orcidid><orcidid>https://orcid.org/0000-0002-4888-7216</orcidid><orcidid>https://orcid.org/0000-0002-5421-2872</orcidid><orcidid>https://orcid.org/0000-0003-3999-843X</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-1078-8319</orcidid><orcidid>https://orcid.org/0000-0002-4191-1068</orcidid><orcidid>https://orcid.org/0000-0002-7612-6932</orcidid><orcidid>https://orcid.org/0000-0003-2379-9225</orcidid><orcidid>https://orcid.org/0000-0001-5594-2319</orcidid><orcidid>https://orcid.org/0000-0002-4268-9657</orcidid><orcidid>https://orcid.org/0000-0002-4531-7170</orcidid><orcidid>https://orcid.org/0000-0002-8284-7728</orcidid><orcidid>https://orcid.org/0000-0002-7167-9319</orcidid><orcidid>https://orcid.org/0000-0003-4159-7619</orcidid><orcidid>https://orcid.org/0000-0003-2488-5723</orcidid><orcidid>https://orcid.org/0000-0002-8155-5408</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2021-03, Vol.229 (5), p.2812-2826
issn 0028-646X
1469-8137
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022591
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals
subjects Airborne microorganisms
Ascomycota - genetics
AvrPm effectors
Bgt
Blumeria graminis
Blumeria graminis f. sp. tritici
Chromosome 7
Chromosome rearrangements
chromosome sequencing
Chromosomes
Cloning
Disease Resistance - genetics
EMS mutagenesis
Gene expression
Gene sequencing
Genetic transformation
Genomes
Hypersensitive response
Identification
Leucine
Mutagenesis
NLR
Nucleic acids
Nucleotides
Pathogens
Phenotypes
Plant Diseases - genetics
Powdery mildew
Receptors
Recombination
Ribonucleic acid
RNA
RNA sequencing
Sequencing
Transgenic plants
Triticum - genetics
Triticum aestivum
Wheat
title A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20highly%20differentiated%20region%20of%20wheat%20chromosome%207AL%20encodes%20a%20Pm1a%20immune%20receptor%20that%20recognizes%20its%20corresponding%20AvrPm1a%20effector%20from%20Blumeria%20graminis&rft.jtitle=The%20New%20phytologist&rft.au=Hewitt,%20Tim&rft.date=2021-03&rft.volume=229&rft.issue=5&rft.spage=2812&rft.epage=2826&rft.pages=2812-2826&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.17075&rft_dat=%3Cjstor_pubme%3E27001359%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485402591&rft_id=info:pmid/33176001&rft_jstor_id=27001359&rfr_iscdi=true