Simplified and Unified Access to Cancer Proteogenomic Data
Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from larg...
Gespeichert in:
Veröffentlicht in: | Journal of proteome research 2021-04, Vol.20 (4), p.1902-1910 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1910 |
---|---|
container_issue | 4 |
container_start_page | 1902 |
container_title | Journal of proteome research |
container_volume | 20 |
creator | Lindgren, Caleb M Adams, David W Kimball, Benjamin Boekweg, Hannah Tayler, Sadie Pugh, Samuel L Payne, Samuel H |
description | Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac. |
doi_str_mv | 10.1021/acs.jproteome.0c00919 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488188448</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMobk4_gtJHXzpvkqZNfRDG_AsDBd1zSNN0drRJTVrBb29dt6FPPt0L95xzDz-EzjFMMRB8JZWfrhtnW21rPQUFkOL0AI0xoyykKSSHu52ndIROvF8DYJYAPUYjSlkMPOJjdP1a1k1VFqXOA2nyYGmGfaaU9j5obTCXRmkXvGxerbSxdamCW9nKU3RUyMrrs-2coOX93dv8MVw8PzzNZ4tQRoy2YQKx1FmUF4nCOMY455zEMomyGJMIMq4zAIYZLxTN44RlfUlgRDFKFCeE53SCbobcpstqnSttWicr0biylu5LWFmKvxdTvouV_RQcCKGE9gGX2wBnPzrtW1GXXumqkkbbzgsScY45jyLeS9kgVc5673Sxf4NB_HAXPXex5y623Hvfxe-Oe9cOdC_Ag2Djt50zPbJ_Qr8Bhn2S7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488188448</pqid></control><display><type>article</type><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><source>American Chemical Society Journals</source><creator>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</creator><creatorcontrib>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</creatorcontrib><description>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00919</identifier><identifier>PMID: 33560848</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of proteome research, 2021-04, Vol.20 (4), p.1902-1910</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</citedby><cites>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</cites><orcidid>0000-0001-6484-9757 ; 0000-0002-8351-1994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.0c00919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.0c00919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33560848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindgren, Caleb M</creatorcontrib><creatorcontrib>Adams, David W</creatorcontrib><creatorcontrib>Kimball, Benjamin</creatorcontrib><creatorcontrib>Boekweg, Hannah</creatorcontrib><creatorcontrib>Tayler, Sadie</creatorcontrib><creatorcontrib>Pugh, Samuel L</creatorcontrib><creatorcontrib>Payne, Samuel H</creatorcontrib><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</description><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMobk4_gtJHXzpvkqZNfRDG_AsDBd1zSNN0drRJTVrBb29dt6FPPt0L95xzDz-EzjFMMRB8JZWfrhtnW21rPQUFkOL0AI0xoyykKSSHu52ndIROvF8DYJYAPUYjSlkMPOJjdP1a1k1VFqXOA2nyYGmGfaaU9j5obTCXRmkXvGxerbSxdamCW9nKU3RUyMrrs-2coOX93dv8MVw8PzzNZ4tQRoy2YQKx1FmUF4nCOMY455zEMomyGJMIMq4zAIYZLxTN44RlfUlgRDFKFCeE53SCbobcpstqnSttWicr0biylu5LWFmKvxdTvouV_RQcCKGE9gGX2wBnPzrtW1GXXumqkkbbzgsScY45jyLeS9kgVc5673Sxf4NB_HAXPXex5y623Hvfxe-Oe9cOdC_Ag2Djt50zPbJ_Qr8Bhn2S7Q</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Lindgren, Caleb M</creator><creator>Adams, David W</creator><creator>Kimball, Benjamin</creator><creator>Boekweg, Hannah</creator><creator>Tayler, Sadie</creator><creator>Pugh, Samuel L</creator><creator>Payne, Samuel H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6484-9757</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid></search><sort><creationdate>20210402</creationdate><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><author>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindgren, Caleb M</creatorcontrib><creatorcontrib>Adams, David W</creatorcontrib><creatorcontrib>Kimball, Benjamin</creatorcontrib><creatorcontrib>Boekweg, Hannah</creatorcontrib><creatorcontrib>Tayler, Sadie</creatorcontrib><creatorcontrib>Pugh, Samuel L</creatorcontrib><creatorcontrib>Payne, Samuel H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindgren, Caleb M</au><au>Adams, David W</au><au>Kimball, Benjamin</au><au>Boekweg, Hannah</au><au>Tayler, Sadie</au><au>Pugh, Samuel L</au><au>Payne, Samuel H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified and Unified Access to Cancer Proteogenomic Data</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1902</spage><epage>1910</epage><pages>1902-1910</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33560848</pmid><doi>10.1021/acs.jproteome.0c00919</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6484-9757</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-3893 |
ispartof | Journal of proteome research, 2021-04, Vol.20 (4), p.1902-1910 |
issn | 1535-3893 1535-3907 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022323 |
source | American Chemical Society Journals |
title | Simplified and Unified Access to Cancer Proteogenomic Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20and%20Unified%20Access%20to%20Cancer%20Proteogenomic%20Data&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Lindgren,%20Caleb%20M&rft.date=2021-04-02&rft.volume=20&rft.issue=4&rft.spage=1902&rft.epage=1910&rft.pages=1902-1910&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00919&rft_dat=%3Cproquest_pubme%3E2488188448%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488188448&rft_id=info:pmid/33560848&rfr_iscdi=true |