Simplified and Unified Access to Cancer Proteogenomic Data

Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2021-04, Vol.20 (4), p.1902-1910
Hauptverfasser: Lindgren, Caleb M, Adams, David W, Kimball, Benjamin, Boekweg, Hannah, Tayler, Sadie, Pugh, Samuel L, Payne, Samuel H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1910
container_issue 4
container_start_page 1902
container_title Journal of proteome research
container_volume 20
creator Lindgren, Caleb M
Adams, David W
Kimball, Benjamin
Boekweg, Hannah
Tayler, Sadie
Pugh, Samuel L
Payne, Samuel H
description Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.
doi_str_mv 10.1021/acs.jproteome.0c00919
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488188448</sourcerecordid><originalsourceid>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMobk4_gtJHXzpvkqZNfRDG_AsDBd1zSNN0drRJTVrBb29dt6FPPt0L95xzDz-EzjFMMRB8JZWfrhtnW21rPQUFkOL0AI0xoyykKSSHu52ndIROvF8DYJYAPUYjSlkMPOJjdP1a1k1VFqXOA2nyYGmGfaaU9j5obTCXRmkXvGxerbSxdamCW9nKU3RUyMrrs-2coOX93dv8MVw8PzzNZ4tQRoy2YQKx1FmUF4nCOMY455zEMomyGJMIMq4zAIYZLxTN44RlfUlgRDFKFCeE53SCbobcpstqnSttWicr0biylu5LWFmKvxdTvouV_RQcCKGE9gGX2wBnPzrtW1GXXumqkkbbzgsScY45jyLeS9kgVc5673Sxf4NB_HAXPXex5y623Hvfxe-Oe9cOdC_Ag2Djt50zPbJ_Qr8Bhn2S7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488188448</pqid></control><display><type>article</type><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><source>American Chemical Society Journals</source><creator>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</creator><creatorcontrib>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</creatorcontrib><description>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/acs.jproteome.0c00919</identifier><identifier>PMID: 33560848</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of proteome research, 2021-04, Vol.20 (4), p.1902-1910</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</citedby><cites>FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</cites><orcidid>0000-0001-6484-9757 ; 0000-0002-8351-1994</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jproteome.0c00919$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jproteome.0c00919$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33560848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindgren, Caleb M</creatorcontrib><creatorcontrib>Adams, David W</creatorcontrib><creatorcontrib>Kimball, Benjamin</creatorcontrib><creatorcontrib>Boekweg, Hannah</creatorcontrib><creatorcontrib>Tayler, Sadie</creatorcontrib><creatorcontrib>Pugh, Samuel L</creatorcontrib><creatorcontrib>Payne, Samuel H</creatorcontrib><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</description><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMobk4_gtJHXzpvkqZNfRDG_AsDBd1zSNN0drRJTVrBb29dt6FPPt0L95xzDz-EzjFMMRB8JZWfrhtnW21rPQUFkOL0AI0xoyykKSSHu52ndIROvF8DYJYAPUYjSlkMPOJjdP1a1k1VFqXOA2nyYGmGfaaU9j5obTCXRmkXvGxerbSxdamCW9nKU3RUyMrrs-2coOX93dv8MVw8PzzNZ4tQRoy2YQKx1FmUF4nCOMY455zEMomyGJMIMq4zAIYZLxTN44RlfUlgRDFKFCeE53SCbobcpstqnSttWicr0biylu5LWFmKvxdTvouV_RQcCKGE9gGX2wBnPzrtW1GXXumqkkbbzgsScY45jyLeS9kgVc5673Sxf4NB_HAXPXex5y623Hvfxe-Oe9cOdC_Ag2Djt50zPbJ_Qr8Bhn2S7Q</recordid><startdate>20210402</startdate><enddate>20210402</enddate><creator>Lindgren, Caleb M</creator><creator>Adams, David W</creator><creator>Kimball, Benjamin</creator><creator>Boekweg, Hannah</creator><creator>Tayler, Sadie</creator><creator>Pugh, Samuel L</creator><creator>Payne, Samuel H</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6484-9757</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid></search><sort><creationdate>20210402</creationdate><title>Simplified and Unified Access to Cancer Proteogenomic Data</title><author>Lindgren, Caleb M ; Adams, David W ; Kimball, Benjamin ; Boekweg, Hannah ; Tayler, Sadie ; Pugh, Samuel L ; Payne, Samuel H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a453t-706aeb4df7c11611d8826a74b61240b8eb005158fc3d675b015052c532c8228d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindgren, Caleb M</creatorcontrib><creatorcontrib>Adams, David W</creatorcontrib><creatorcontrib>Kimball, Benjamin</creatorcontrib><creatorcontrib>Boekweg, Hannah</creatorcontrib><creatorcontrib>Tayler, Sadie</creatorcontrib><creatorcontrib>Pugh, Samuel L</creatorcontrib><creatorcontrib>Payne, Samuel H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindgren, Caleb M</au><au>Adams, David W</au><au>Kimball, Benjamin</au><au>Boekweg, Hannah</au><au>Tayler, Sadie</au><au>Pugh, Samuel L</au><au>Payne, Samuel H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified and Unified Access to Cancer Proteogenomic Data</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2021-04-02</date><risdate>2021</risdate><volume>20</volume><issue>4</issue><spage>1902</spage><epage>1910</epage><pages>1902-1910</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>Comprehensive cancer data sets recently generated by the Clinical Proteomic Tumor Analysis Consortium (CPTAC) offer great potential for advancing our understanding of how to combat cancer. These data sets include DNA, RNA, protein, and clinical characterization for tumor and normal samples from large cohorts of many different cancer types. The raw data are publicly available at various Cancer Research Data Commons. However, widespread reuse of these data sets is also facilitated by easy access to the processed quantitative data tables. We have created a data application programming interface (API) to distribute these processed tables, implemented as a Python package called cptac. We implement it such that users who prefer to work in R can easily use our package for data access and then transfer the data into R for analysis. Our package distributes the finalized processed CPTAC data sets in a consistent, up-to-date format. This consistency makes it easy to integrate the data with common graphing, statistical, and machine-learning packages for advanced analysis. Additionally, consistent formatting across all cancer types promotes the investigation of pan-cancer trends. The data API structure of directly streaming data within a programming environment enhances the reproducibility. Finally, with the accompanying tutorials, this package provides a novel resource for cancer research education. View the software documentation at https://paynelab.github.io/cptac/. View the GitHub repository at https://github.com/PayneLab/cptac.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33560848</pmid><doi>10.1021/acs.jproteome.0c00919</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6484-9757</orcidid><orcidid>https://orcid.org/0000-0002-8351-1994</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2021-04, Vol.20 (4), p.1902-1910
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022323
source American Chemical Society Journals
title Simplified and Unified Access to Cancer Proteogenomic Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20and%20Unified%20Access%20to%20Cancer%20Proteogenomic%20Data&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Lindgren,%20Caleb%20M&rft.date=2021-04-02&rft.volume=20&rft.issue=4&rft.spage=1902&rft.epage=1910&rft.pages=1902-1910&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/acs.jproteome.0c00919&rft_dat=%3Cproquest_pubme%3E2488188448%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2488188448&rft_id=info:pmid/33560848&rfr_iscdi=true