Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles
Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolym...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2021-01, Vol.13 (1), p.1386-1397 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1397 |
---|---|
container_issue | 1 |
container_start_page | 1386 |
container_title | ACS applied materials & interfaces |
container_volume | 13 |
creator | Roma, Elia Corsi, Pietro Willinger, Max Leitner, Nikolaus Simon Zirbs, Ronald Reimhult, Erik Capone, Barbara Gasperi, Tecla |
description | Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly(2-oxazoline)s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process. |
doi_str_mv | 10.1021/acsami.0c17759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8021223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475086742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</originalsourceid><addsrcrecordid>eNp1UU1PAjEUbIxG8OPq0ezRmCx22y27vZgYRDEBjQmem0f3LSxZ2rUFIv_eEpDowdN7eZ2ZTmYIuUpoJ6EsuQPtYVF1qE6yTMgj0k5kmsY5E-z4sKdpi5x5P6e0yxkVp6TFOc-llLxN3scztA6XlYY6AlNE_a8GXbVAswyHR_TV1ES2jAYI6000wnCNR7ZpKjONRjA1W2b0CsY24MJao78gJyXUHi_385x8PPXHvUE8fHt-6T0MY0iZWMaaChQZ7TLgZdad6KSUaaYp0wBIBZ-EWQqUoiiElJTRAjIGUk8kgoBclPyc3O90m9VkgYUOjh3UqgnmwW2UhUr9fTHVTE3tWuUhN8Z4ELjZCzj7uUK_VIvKa6xrMGhXXrE0EzTvZikL0M4Oqp313mF5-CahatuD2vWg9j0EwvVvcwf4T_ABcLsDBKKa25UzIav_1L4B4luVQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475086742</pqid></control><display><type>article</type><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><source>ACS Publications</source><creator>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</creator><creatorcontrib>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</creatorcontrib><description>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly(2-oxazoline)s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17759</identifier><identifier>PMID: 33389993</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.1386-1397</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</citedby><cites>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</cites><orcidid>0000-0003-0507-6357 ; 0000-0003-0805-6239 ; 0000-0003-1417-5576 ; 0000-0003-3638-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17759$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17759$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33389993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roma, Elia</creatorcontrib><creatorcontrib>Corsi, Pietro</creatorcontrib><creatorcontrib>Willinger, Max</creatorcontrib><creatorcontrib>Leitner, Nikolaus Simon</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><creatorcontrib>Capone, Barbara</creatorcontrib><creatorcontrib>Gasperi, Tecla</creatorcontrib><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly(2-oxazoline)s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1PAjEUbIxG8OPq0ezRmCx22y27vZgYRDEBjQmem0f3LSxZ2rUFIv_eEpDowdN7eZ2ZTmYIuUpoJ6EsuQPtYVF1qE6yTMgj0k5kmsY5E-z4sKdpi5x5P6e0yxkVp6TFOc-llLxN3scztA6XlYY6AlNE_a8GXbVAswyHR_TV1ES2jAYI6000wnCNR7ZpKjONRjA1W2b0CsY24MJao78gJyXUHi_385x8PPXHvUE8fHt-6T0MY0iZWMaaChQZ7TLgZdad6KSUaaYp0wBIBZ-EWQqUoiiElJTRAjIGUk8kgoBclPyc3O90m9VkgYUOjh3UqgnmwW2UhUr9fTHVTE3tWuUhN8Z4ELjZCzj7uUK_VIvKa6xrMGhXXrE0EzTvZikL0M4Oqp313mF5-CahatuD2vWg9j0EwvVvcwf4T_ABcLsDBKKa25UzIav_1L4B4luVQQ</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Roma, Elia</creator><creator>Corsi, Pietro</creator><creator>Willinger, Max</creator><creator>Leitner, Nikolaus Simon</creator><creator>Zirbs, Ronald</creator><creator>Reimhult, Erik</creator><creator>Capone, Barbara</creator><creator>Gasperi, Tecla</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0507-6357</orcidid><orcidid>https://orcid.org/0000-0003-0805-6239</orcidid><orcidid>https://orcid.org/0000-0003-1417-5576</orcidid><orcidid>https://orcid.org/0000-0003-3638-2517</orcidid></search><sort><creationdate>20210113</creationdate><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><author>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roma, Elia</creatorcontrib><creatorcontrib>Corsi, Pietro</creatorcontrib><creatorcontrib>Willinger, Max</creatorcontrib><creatorcontrib>Leitner, Nikolaus Simon</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><creatorcontrib>Capone, Barbara</creatorcontrib><creatorcontrib>Gasperi, Tecla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roma, Elia</au><au>Corsi, Pietro</au><au>Willinger, Max</au><au>Leitner, Nikolaus Simon</au><au>Zirbs, Ronald</au><au>Reimhult, Erik</au><au>Capone, Barbara</au><au>Gasperi, Tecla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>1386</spage><epage>1397</epage><pages>1386-1397</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly(2-oxazoline)s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33389993</pmid><doi>10.1021/acsami.0c17759</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0507-6357</orcidid><orcidid>https://orcid.org/0000-0003-0805-6239</orcidid><orcidid>https://orcid.org/0000-0003-1417-5576</orcidid><orcidid>https://orcid.org/0000-0003-3638-2517</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.1386-1397 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8021223 |
source | ACS Publications |
subjects | Applications of Polymer, Composite, and Coating Materials |
title | Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Design%20of%20Heavy%20Metal-Mopping%20Magnetic%20Nanoparticles&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Roma,%20Elia&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=1386&rft.epage=1397&rft.pages=1386-1397&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17759&rft_dat=%3Cproquest_pubme%3E2475086742%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475086742&rft_id=info:pmid/33389993&rfr_iscdi=true |