Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles

Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolym...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2021-01, Vol.13 (1), p.1386-1397
Hauptverfasser: Roma, Elia, Corsi, Pietro, Willinger, Max, Leitner, Nikolaus Simon, Zirbs, Ronald, Reimhult, Erik, Capone, Barbara, Gasperi, Tecla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 1
container_start_page 1386
container_title ACS applied materials & interfaces
container_volume 13
creator Roma, Elia
Corsi, Pietro
Willinger, Max
Leitner, Nikolaus Simon
Zirbs, Ronald
Reimhult, Erik
Capone, Barbara
Gasperi, Tecla
description Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly­(2-oxazoline)­s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.
doi_str_mv 10.1021/acsami.0c17759
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8021223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475086742</sourcerecordid><originalsourceid>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</originalsourceid><addsrcrecordid>eNp1UU1PAjEUbIxG8OPq0ezRmCx22y27vZgYRDEBjQmem0f3LSxZ2rUFIv_eEpDowdN7eZ2ZTmYIuUpoJ6EsuQPtYVF1qE6yTMgj0k5kmsY5E-z4sKdpi5x5P6e0yxkVp6TFOc-llLxN3scztA6XlYY6AlNE_a8GXbVAswyHR_TV1ES2jAYI6000wnCNR7ZpKjONRjA1W2b0CsY24MJao78gJyXUHi_385x8PPXHvUE8fHt-6T0MY0iZWMaaChQZ7TLgZdad6KSUaaYp0wBIBZ-EWQqUoiiElJTRAjIGUk8kgoBclPyc3O90m9VkgYUOjh3UqgnmwW2UhUr9fTHVTE3tWuUhN8Z4ELjZCzj7uUK_VIvKa6xrMGhXXrE0EzTvZikL0M4Oqp313mF5-CahatuD2vWg9j0EwvVvcwf4T_ABcLsDBKKa25UzIav_1L4B4luVQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475086742</pqid></control><display><type>article</type><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><source>ACS Publications</source><creator>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</creator><creatorcontrib>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</creatorcontrib><description>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly­(2-oxazoline)­s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c17759</identifier><identifier>PMID: 33389993</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Applications of Polymer, Composite, and Coating Materials</subject><ispartof>ACS applied materials &amp; interfaces, 2021-01, Vol.13 (1), p.1386-1397</ispartof><rights>2021 American Chemical Society</rights><rights>2021 American Chemical Society 2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</citedby><cites>FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</cites><orcidid>0000-0003-0507-6357 ; 0000-0003-0805-6239 ; 0000-0003-1417-5576 ; 0000-0003-3638-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c17759$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c17759$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33389993$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roma, Elia</creatorcontrib><creatorcontrib>Corsi, Pietro</creatorcontrib><creatorcontrib>Willinger, Max</creatorcontrib><creatorcontrib>Leitner, Nikolaus Simon</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><creatorcontrib>Capone, Barbara</creatorcontrib><creatorcontrib>Gasperi, Tecla</creatorcontrib><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly­(2-oxazoline)­s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</description><subject>Applications of Polymer, Composite, and Coating Materials</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UU1PAjEUbIxG8OPq0ezRmCx22y27vZgYRDEBjQmem0f3LSxZ2rUFIv_eEpDowdN7eZ2ZTmYIuUpoJ6EsuQPtYVF1qE6yTMgj0k5kmsY5E-z4sKdpi5x5P6e0yxkVp6TFOc-llLxN3scztA6XlYY6AlNE_a8GXbVAswyHR_TV1ES2jAYI6000wnCNR7ZpKjONRjA1W2b0CsY24MJao78gJyXUHi_385x8PPXHvUE8fHt-6T0MY0iZWMaaChQZ7TLgZdad6KSUaaYp0wBIBZ-EWQqUoiiElJTRAjIGUk8kgoBclPyc3O90m9VkgYUOjh3UqgnmwW2UhUr9fTHVTE3tWuUhN8Z4ELjZCzj7uUK_VIvKa6xrMGhXXrE0EzTvZikL0M4Oqp313mF5-CahatuD2vWg9j0EwvVvcwf4T_ABcLsDBKKa25UzIav_1L4B4luVQQ</recordid><startdate>20210113</startdate><enddate>20210113</enddate><creator>Roma, Elia</creator><creator>Corsi, Pietro</creator><creator>Willinger, Max</creator><creator>Leitner, Nikolaus Simon</creator><creator>Zirbs, Ronald</creator><creator>Reimhult, Erik</creator><creator>Capone, Barbara</creator><creator>Gasperi, Tecla</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0507-6357</orcidid><orcidid>https://orcid.org/0000-0003-0805-6239</orcidid><orcidid>https://orcid.org/0000-0003-1417-5576</orcidid><orcidid>https://orcid.org/0000-0003-3638-2517</orcidid></search><sort><creationdate>20210113</creationdate><title>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</title><author>Roma, Elia ; Corsi, Pietro ; Willinger, Max ; Leitner, Nikolaus Simon ; Zirbs, Ronald ; Reimhult, Erik ; Capone, Barbara ; Gasperi, Tecla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a425t-c05e57062a3f76bc1f947c02caae053bcaaf5e95dd599020da72a9cb9ea5a85f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applications of Polymer, Composite, and Coating Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roma, Elia</creatorcontrib><creatorcontrib>Corsi, Pietro</creatorcontrib><creatorcontrib>Willinger, Max</creatorcontrib><creatorcontrib>Leitner, Nikolaus Simon</creatorcontrib><creatorcontrib>Zirbs, Ronald</creatorcontrib><creatorcontrib>Reimhult, Erik</creatorcontrib><creatorcontrib>Capone, Barbara</creatorcontrib><creatorcontrib>Gasperi, Tecla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roma, Elia</au><au>Corsi, Pietro</au><au>Willinger, Max</au><au>Leitner, Nikolaus Simon</au><au>Zirbs, Ronald</au><au>Reimhult, Erik</au><au>Capone, Barbara</au><au>Gasperi, Tecla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2021-01-13</date><risdate>2021</risdate><volume>13</volume><issue>1</issue><spage>1386</spage><epage>1397</epage><pages>1386-1397</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Herein, we show a comprehensive experimental, theoretical, and computational study aimed at designing macromolecules able to adsorb a cargo at the nanoscale. Specifically, we focus on the adsorption properties of star diblock copolymers, i.e., macromolecules made by a number f of H-T diblock copolymer arms tethered on a central core; the H monomeric heads, which are closer to the tethering point, are attractive toward a specific target, while the T monomeric tails are neutral to the cargo. Experimentally, we exploited the adaptability of poly­(2-oxazoline)­s (POxs) to realize block copolymer-coated nanoparticles with a proper functionalization able to interact with heavy metals and show or exhibit a thermoresponsive behavior in aqueous solution. We here present the synthesis and analysis of the properties of a high molecular mass block copolymer featured by (i) a polar side chain, capable of exploiting electrostatic and hydrophilic interaction with a predetermined cargo, and (ii) a thermoresponsive scaffold, able to change the interaction with the media by tuning the temperature. Afterward, the obtained polymers were grafted onto iron oxide nanoparticles and the thermoresponsive properties were investigated. Through isothermal titration calorimetry, we then analyzed the adsorption properties of the synthesized superparamagnetic nanoparticles for heavy metal ions in aqueous solution. Additionally, we use a combination of scaling theories and simulations to link equilibrium properties of the system to a prediction of the loading properties as a function of size ratio and effective interactions between the considered species. The comparison between experimental results on adsorption and theoretical prediction validates the whole design process.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33389993</pmid><doi>10.1021/acsami.0c17759</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0507-6357</orcidid><orcidid>https://orcid.org/0000-0003-0805-6239</orcidid><orcidid>https://orcid.org/0000-0003-1417-5576</orcidid><orcidid>https://orcid.org/0000-0003-3638-2517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2021-01, Vol.13 (1), p.1386-1397
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8021223
source ACS Publications
subjects Applications of Polymer, Composite, and Coating Materials
title Theoretical and Experimental Design of Heavy Metal-Mopping Magnetic Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Design%20of%20Heavy%20Metal-Mopping%20Magnetic%20Nanoparticles&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Roma,%20Elia&rft.date=2021-01-13&rft.volume=13&rft.issue=1&rft.spage=1386&rft.epage=1397&rft.pages=1386-1397&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c17759&rft_dat=%3Cproquest_pubme%3E2475086742%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475086742&rft_id=info:pmid/33389993&rfr_iscdi=true