Cingulo-opercular control network and disused motor circuits joined in standby mode

Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (13), p.1-10
Hauptverfasser: Newbold, Dillan J., Gordon, Evan M., Laumann, Timothy O., Seider, Nicole A., Montez, David F., Gross, Sarah J., Zheng, Annie, Nielsen, Ashley N., Hoyt, Catherine R., Hampton, Jacqueline M., Ortega, Mario, Adeyemo, Babatunde, Miller, Derek B., Van, Andrew N., Marek, Scott, Schlaggar, Bradley L., Carter, Alexandre R., Kay, Benjamin P., Greene, Deanna J., Raichle, Marcus E., Petersen, Steven E., Snyder, Abraham Z., Dosenbach, Nico U. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 13
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 118
creator Newbold, Dillan J.
Gordon, Evan M.
Laumann, Timothy O.
Seider, Nicole A.
Montez, David F.
Gross, Sarah J.
Zheng, Annie
Nielsen, Ashley N.
Hoyt, Catherine R.
Hampton, Jacqueline M.
Ortega, Mario
Adeyemo, Babatunde
Miller, Derek B.
Van, Andrew N.
Marek, Scott
Schlaggar, Bradley L.
Carter, Alexandre R.
Kay, Benjamin P.
Greene, Deanna J.
Raichle, Marcus E.
Petersen, Steven E.
Snyder, Abraham Z.
Dosenbach, Nico U. F.
description Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.
doi_str_mv 10.1073/pnas.2019128118
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8020791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039815</jstor_id><sourcerecordid>27039815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxS1U1KTQc0-t9tjLwviLtS9IVVRoJSQOwNlyvOPgsLGDvUvFf49RaFpOI8385s3TPEK-UDih0PHTbbTlhAHVlClK1QGZU9C0PRMaPpA5AOtaJZiYkU-lrAFASwUfyYzzTnKhxJzcLEJcTUNq0xazmwabG5fimNPQRBz_pPzQ2Ng3fShTwb7ZpDFVIlQ0jKVZpxBrN8SmjBVbPlegx2Ny6O1Q8PNbPSJ3Fz9vF7_aq-vL34sfV60TVI6t7JjzoIWjDq1yElD3rGMomEbBtRNL7bkTnllBvV5K7DUDhai875i3PT8i5zvd7bTcYO-w-raD2eawsfnZJBvM-0kM92aVnowCBp2mVeD7m0BOjxOW0WxCcTgMNmKaimESBJeUMlbR0x3qciolo9-foWBeozCvUZh_UdSNb_-72_N_f1-BrztgXepT93PWAdeKSv4Cf6aRxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504351122</pqid></control><display><type>article</type><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</creator><creatorcontrib>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</creatorcontrib><description>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2019128118</identifier><identifier>PMID: 33753484</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Biological Sciences ; Brain Mapping ; Executive Function - physiology ; Female ; Gyrus Cinguli - cytology ; Gyrus Cinguli - diagnostic imaging ; Gyrus Cinguli - physiology ; Healthy Volunteers ; Humans ; Magnetic Resonance Imaging ; Male ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; Rest - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (13), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</citedby><cites>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</cites><orcidid>0000-0003-0175-5360 ; 0000-0002-1847-9588 ; 0000-0002-8911-3639 ; 0000-0002-9246-2469 ; 0000-0003-1181-9698 ; 0000-0002-0428-427X ; 0000-0003-1511-1515 ; 0000-0002-8047-9458 ; 0000-0002-3379-9627 ; 0000-0003-0032-9052 ; 0000-0002-5826-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039815$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039815$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33753484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newbold, Dillan J.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Seider, Nicole A.</creatorcontrib><creatorcontrib>Montez, David F.</creatorcontrib><creatorcontrib>Gross, Sarah J.</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Nielsen, Ashley N.</creatorcontrib><creatorcontrib>Hoyt, Catherine R.</creatorcontrib><creatorcontrib>Hampton, Jacqueline M.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Miller, Derek B.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Carter, Alexandre R.</creatorcontrib><creatorcontrib>Kay, Benjamin P.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</description><subject>Adult</subject><subject>Biological Sciences</subject><subject>Brain Mapping</subject><subject>Executive Function - physiology</subject><subject>Female</subject><subject>Gyrus Cinguli - cytology</subject><subject>Gyrus Cinguli - diagnostic imaging</subject><subject>Gyrus Cinguli - physiology</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Rest - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1PGzEQxS1U1KTQc0-t9tjLwviLtS9IVVRoJSQOwNlyvOPgsLGDvUvFf49RaFpOI8385s3TPEK-UDih0PHTbbTlhAHVlClK1QGZU9C0PRMaPpA5AOtaJZiYkU-lrAFASwUfyYzzTnKhxJzcLEJcTUNq0xazmwabG5fimNPQRBz_pPzQ2Ng3fShTwb7ZpDFVIlQ0jKVZpxBrN8SmjBVbPlegx2Ny6O1Q8PNbPSJ3Fz9vF7_aq-vL34sfV60TVI6t7JjzoIWjDq1yElD3rGMomEbBtRNL7bkTnllBvV5K7DUDhai875i3PT8i5zvd7bTcYO-w-raD2eawsfnZJBvM-0kM92aVnowCBp2mVeD7m0BOjxOW0WxCcTgMNmKaimESBJeUMlbR0x3qciolo9-foWBeozCvUZh_UdSNb_-72_N_f1-BrztgXepT93PWAdeKSv4Cf6aRxA</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Newbold, Dillan J.</creator><creator>Gordon, Evan M.</creator><creator>Laumann, Timothy O.</creator><creator>Seider, Nicole A.</creator><creator>Montez, David F.</creator><creator>Gross, Sarah J.</creator><creator>Zheng, Annie</creator><creator>Nielsen, Ashley N.</creator><creator>Hoyt, Catherine R.</creator><creator>Hampton, Jacqueline M.</creator><creator>Ortega, Mario</creator><creator>Adeyemo, Babatunde</creator><creator>Miller, Derek B.</creator><creator>Van, Andrew N.</creator><creator>Marek, Scott</creator><creator>Schlaggar, Bradley L.</creator><creator>Carter, Alexandre R.</creator><creator>Kay, Benjamin P.</creator><creator>Greene, Deanna J.</creator><creator>Raichle, Marcus E.</creator><creator>Petersen, Steven E.</creator><creator>Snyder, Abraham Z.</creator><creator>Dosenbach, Nico U. F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0175-5360</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><orcidid>https://orcid.org/0000-0002-8911-3639</orcidid><orcidid>https://orcid.org/0000-0002-9246-2469</orcidid><orcidid>https://orcid.org/0000-0003-1181-9698</orcidid><orcidid>https://orcid.org/0000-0002-0428-427X</orcidid><orcidid>https://orcid.org/0000-0003-1511-1515</orcidid><orcidid>https://orcid.org/0000-0002-8047-9458</orcidid><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0003-0032-9052</orcidid><orcidid>https://orcid.org/0000-0002-5826-3546</orcidid></search><sort><creationdate>20210330</creationdate><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><author>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Biological Sciences</topic><topic>Brain Mapping</topic><topic>Executive Function - physiology</topic><topic>Female</topic><topic>Gyrus Cinguli - cytology</topic><topic>Gyrus Cinguli - diagnostic imaging</topic><topic>Gyrus Cinguli - physiology</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Rest - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newbold, Dillan J.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Seider, Nicole A.</creatorcontrib><creatorcontrib>Montez, David F.</creatorcontrib><creatorcontrib>Gross, Sarah J.</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Nielsen, Ashley N.</creatorcontrib><creatorcontrib>Hoyt, Catherine R.</creatorcontrib><creatorcontrib>Hampton, Jacqueline M.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Miller, Derek B.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Carter, Alexandre R.</creatorcontrib><creatorcontrib>Kay, Benjamin P.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newbold, Dillan J.</au><au>Gordon, Evan M.</au><au>Laumann, Timothy O.</au><au>Seider, Nicole A.</au><au>Montez, David F.</au><au>Gross, Sarah J.</au><au>Zheng, Annie</au><au>Nielsen, Ashley N.</au><au>Hoyt, Catherine R.</au><au>Hampton, Jacqueline M.</au><au>Ortega, Mario</au><au>Adeyemo, Babatunde</au><au>Miller, Derek B.</au><au>Van, Andrew N.</au><au>Marek, Scott</au><au>Schlaggar, Bradley L.</au><au>Carter, Alexandre R.</au><au>Kay, Benjamin P.</au><au>Greene, Deanna J.</au><au>Raichle, Marcus E.</au><au>Petersen, Steven E.</au><au>Snyder, Abraham Z.</au><au>Dosenbach, Nico U. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cingulo-opercular control network and disused motor circuits joined in standby mode</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-03-30</date><risdate>2021</risdate><volume>118</volume><issue>13</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33753484</pmid><doi>10.1073/pnas.2019128118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0175-5360</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><orcidid>https://orcid.org/0000-0002-8911-3639</orcidid><orcidid>https://orcid.org/0000-0002-9246-2469</orcidid><orcidid>https://orcid.org/0000-0003-1181-9698</orcidid><orcidid>https://orcid.org/0000-0002-0428-427X</orcidid><orcidid>https://orcid.org/0000-0003-1511-1515</orcidid><orcidid>https://orcid.org/0000-0002-8047-9458</orcidid><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0003-0032-9052</orcidid><orcidid>https://orcid.org/0000-0002-5826-3546</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (13), p.1-10
issn 0027-8424
1091-6490
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8020791
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adult
Biological Sciences
Brain Mapping
Executive Function - physiology
Female
Gyrus Cinguli - cytology
Gyrus Cinguli - diagnostic imaging
Gyrus Cinguli - physiology
Healthy Volunteers
Humans
Magnetic Resonance Imaging
Male
Nerve Net - physiology
Neuronal Plasticity - physiology
Rest - physiology
title Cingulo-opercular control network and disused motor circuits joined in standby mode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cingulo-opercular%20control%20network%20and%20disused%20motor%20circuits%20joined%20in%20standby%20mode&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Newbold,%20Dillan%20J.&rft.date=2021-03-30&rft.volume=118&rft.issue=13&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2019128118&rft_dat=%3Cjstor_pubme%3E27039815%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504351122&rft_id=info:pmid/33753484&rft_jstor_id=27039815&rfr_iscdi=true