Cingulo-opercular control network and disused motor circuits joined in standby mode
Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (13), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 13 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Newbold, Dillan J. Gordon, Evan M. Laumann, Timothy O. Seider, Nicole A. Montez, David F. Gross, Sarah J. Zheng, Annie Nielsen, Ashley N. Hoyt, Catherine R. Hampton, Jacqueline M. Ortega, Mario Adeyemo, Babatunde Miller, Derek B. Van, Andrew N. Marek, Scott Schlaggar, Bradley L. Carter, Alexandre R. Kay, Benjamin P. Greene, Deanna J. Raichle, Marcus E. Petersen, Steven E. Snyder, Abraham Z. Dosenbach, Nico U. F. |
description | Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions. |
doi_str_mv | 10.1073/pnas.2019128118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8020791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27039815</jstor_id><sourcerecordid>27039815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxS1U1KTQc0-t9tjLwviLtS9IVVRoJSQOwNlyvOPgsLGDvUvFf49RaFpOI8385s3TPEK-UDih0PHTbbTlhAHVlClK1QGZU9C0PRMaPpA5AOtaJZiYkU-lrAFASwUfyYzzTnKhxJzcLEJcTUNq0xazmwabG5fimNPQRBz_pPzQ2Ng3fShTwb7ZpDFVIlQ0jKVZpxBrN8SmjBVbPlegx2Ny6O1Q8PNbPSJ3Fz9vF7_aq-vL34sfV60TVI6t7JjzoIWjDq1yElD3rGMomEbBtRNL7bkTnllBvV5K7DUDhai875i3PT8i5zvd7bTcYO-w-raD2eawsfnZJBvM-0kM92aVnowCBp2mVeD7m0BOjxOW0WxCcTgMNmKaimESBJeUMlbR0x3qciolo9-foWBeozCvUZh_UdSNb_-72_N_f1-BrztgXepT93PWAdeKSv4Cf6aRxA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504351122</pqid></control><display><type>article</type><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</creator><creatorcontrib>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</creatorcontrib><description>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</description><identifier>ISSN: 0027-8424</identifier><identifier>ISSN: 1091-6490</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2019128118</identifier><identifier>PMID: 33753484</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Biological Sciences ; Brain Mapping ; Executive Function - physiology ; Female ; Gyrus Cinguli - cytology ; Gyrus Cinguli - diagnostic imaging ; Gyrus Cinguli - physiology ; Healthy Volunteers ; Humans ; Magnetic Resonance Imaging ; Male ; Nerve Net - physiology ; Neuronal Plasticity - physiology ; Rest - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (13), p.1-10</ispartof><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</citedby><cites>FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</cites><orcidid>0000-0003-0175-5360 ; 0000-0002-1847-9588 ; 0000-0002-8911-3639 ; 0000-0002-9246-2469 ; 0000-0003-1181-9698 ; 0000-0002-0428-427X ; 0000-0003-1511-1515 ; 0000-0002-8047-9458 ; 0000-0002-3379-9627 ; 0000-0003-0032-9052 ; 0000-0002-5826-3546</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27039815$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27039815$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33753484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newbold, Dillan J.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Seider, Nicole A.</creatorcontrib><creatorcontrib>Montez, David F.</creatorcontrib><creatorcontrib>Gross, Sarah J.</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Nielsen, Ashley N.</creatorcontrib><creatorcontrib>Hoyt, Catherine R.</creatorcontrib><creatorcontrib>Hampton, Jacqueline M.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Miller, Derek B.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Carter, Alexandre R.</creatorcontrib><creatorcontrib>Kay, Benjamin P.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</description><subject>Adult</subject><subject>Biological Sciences</subject><subject>Brain Mapping</subject><subject>Executive Function - physiology</subject><subject>Female</subject><subject>Gyrus Cinguli - cytology</subject><subject>Gyrus Cinguli - diagnostic imaging</subject><subject>Gyrus Cinguli - physiology</subject><subject>Healthy Volunteers</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Nerve Net - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Rest - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1PGzEQxS1U1KTQc0-t9tjLwviLtS9IVVRoJSQOwNlyvOPgsLGDvUvFf49RaFpOI8385s3TPEK-UDih0PHTbbTlhAHVlClK1QGZU9C0PRMaPpA5AOtaJZiYkU-lrAFASwUfyYzzTnKhxJzcLEJcTUNq0xazmwabG5fimNPQRBz_pPzQ2Ng3fShTwb7ZpDFVIlQ0jKVZpxBrN8SmjBVbPlegx2Ny6O1Q8PNbPSJ3Fz9vF7_aq-vL34sfV60TVI6t7JjzoIWjDq1yElD3rGMomEbBtRNL7bkTnllBvV5K7DUDhai875i3PT8i5zvd7bTcYO-w-raD2eawsfnZJBvM-0kM92aVnowCBp2mVeD7m0BOjxOW0WxCcTgMNmKaimESBJeUMlbR0x3qciolo9-foWBeozCvUZh_UdSNb_-72_N_f1-BrztgXepT93PWAdeKSv4Cf6aRxA</recordid><startdate>20210330</startdate><enddate>20210330</enddate><creator>Newbold, Dillan J.</creator><creator>Gordon, Evan M.</creator><creator>Laumann, Timothy O.</creator><creator>Seider, Nicole A.</creator><creator>Montez, David F.</creator><creator>Gross, Sarah J.</creator><creator>Zheng, Annie</creator><creator>Nielsen, Ashley N.</creator><creator>Hoyt, Catherine R.</creator><creator>Hampton, Jacqueline M.</creator><creator>Ortega, Mario</creator><creator>Adeyemo, Babatunde</creator><creator>Miller, Derek B.</creator><creator>Van, Andrew N.</creator><creator>Marek, Scott</creator><creator>Schlaggar, Bradley L.</creator><creator>Carter, Alexandre R.</creator><creator>Kay, Benjamin P.</creator><creator>Greene, Deanna J.</creator><creator>Raichle, Marcus E.</creator><creator>Petersen, Steven E.</creator><creator>Snyder, Abraham Z.</creator><creator>Dosenbach, Nico U. F.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0175-5360</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><orcidid>https://orcid.org/0000-0002-8911-3639</orcidid><orcidid>https://orcid.org/0000-0002-9246-2469</orcidid><orcidid>https://orcid.org/0000-0003-1181-9698</orcidid><orcidid>https://orcid.org/0000-0002-0428-427X</orcidid><orcidid>https://orcid.org/0000-0003-1511-1515</orcidid><orcidid>https://orcid.org/0000-0002-8047-9458</orcidid><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0003-0032-9052</orcidid><orcidid>https://orcid.org/0000-0002-5826-3546</orcidid></search><sort><creationdate>20210330</creationdate><title>Cingulo-opercular control network and disused motor circuits joined in standby mode</title><author>Newbold, Dillan J. ; Gordon, Evan M. ; Laumann, Timothy O. ; Seider, Nicole A. ; Montez, David F. ; Gross, Sarah J. ; Zheng, Annie ; Nielsen, Ashley N. ; Hoyt, Catherine R. ; Hampton, Jacqueline M. ; Ortega, Mario ; Adeyemo, Babatunde ; Miller, Derek B. ; Van, Andrew N. ; Marek, Scott ; Schlaggar, Bradley L. ; Carter, Alexandre R. ; Kay, Benjamin P. ; Greene, Deanna J. ; Raichle, Marcus E. ; Petersen, Steven E. ; Snyder, Abraham Z. ; Dosenbach, Nico U. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-572cf094c1cea8c50e9d272e429e439c4b9f3c4f2a41f9b5ed9208ee8ff72fad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Biological Sciences</topic><topic>Brain Mapping</topic><topic>Executive Function - physiology</topic><topic>Female</topic><topic>Gyrus Cinguli - cytology</topic><topic>Gyrus Cinguli - diagnostic imaging</topic><topic>Gyrus Cinguli - physiology</topic><topic>Healthy Volunteers</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Nerve Net - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Rest - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newbold, Dillan J.</creatorcontrib><creatorcontrib>Gordon, Evan M.</creatorcontrib><creatorcontrib>Laumann, Timothy O.</creatorcontrib><creatorcontrib>Seider, Nicole A.</creatorcontrib><creatorcontrib>Montez, David F.</creatorcontrib><creatorcontrib>Gross, Sarah J.</creatorcontrib><creatorcontrib>Zheng, Annie</creatorcontrib><creatorcontrib>Nielsen, Ashley N.</creatorcontrib><creatorcontrib>Hoyt, Catherine R.</creatorcontrib><creatorcontrib>Hampton, Jacqueline M.</creatorcontrib><creatorcontrib>Ortega, Mario</creatorcontrib><creatorcontrib>Adeyemo, Babatunde</creatorcontrib><creatorcontrib>Miller, Derek B.</creatorcontrib><creatorcontrib>Van, Andrew N.</creatorcontrib><creatorcontrib>Marek, Scott</creatorcontrib><creatorcontrib>Schlaggar, Bradley L.</creatorcontrib><creatorcontrib>Carter, Alexandre R.</creatorcontrib><creatorcontrib>Kay, Benjamin P.</creatorcontrib><creatorcontrib>Greene, Deanna J.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><creatorcontrib>Petersen, Steven E.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Dosenbach, Nico U. F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newbold, Dillan J.</au><au>Gordon, Evan M.</au><au>Laumann, Timothy O.</au><au>Seider, Nicole A.</au><au>Montez, David F.</au><au>Gross, Sarah J.</au><au>Zheng, Annie</au><au>Nielsen, Ashley N.</au><au>Hoyt, Catherine R.</au><au>Hampton, Jacqueline M.</au><au>Ortega, Mario</au><au>Adeyemo, Babatunde</au><au>Miller, Derek B.</au><au>Van, Andrew N.</au><au>Marek, Scott</au><au>Schlaggar, Bradley L.</au><au>Carter, Alexandre R.</au><au>Kay, Benjamin P.</au><au>Greene, Deanna J.</au><au>Raichle, Marcus E.</au><au>Petersen, Steven E.</au><au>Snyder, Abraham Z.</au><au>Dosenbach, Nico U. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cingulo-opercular control network and disused motor circuits joined in standby mode</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-03-30</date><risdate>2021</risdate><volume>118</volume><issue>13</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><issn>1091-6490</issn><eissn>1091-6490</eissn><abstract>Whole-brain resting-state functional MRI (rs-fMRI) during 2 wk of upper-limb casting revealed that disused motor regions became more strongly connected to the cingulo-opercular network (CON), an executive control network that includes regions of the dorsal anterior cingulate cortex (dACC) and insula. Disuse-driven increases in functional connectivity (FC) were specific to the CON and somatomotor networks and did not involve any other networks, such as the salience, frontoparietal, or default mode networks. Censoring and modeling analyses showed that FC increases during casting were mediated by large, spontaneous activity pulses that appeared in the disused motor regions and CON control regions. During limb constraint, disused motor circuits appear to enter a standby mode characterized by spontaneous activity pulses and strengthened connectivity to CON executive control regions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33753484</pmid><doi>10.1073/pnas.2019128118</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0175-5360</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><orcidid>https://orcid.org/0000-0002-8911-3639</orcidid><orcidid>https://orcid.org/0000-0002-9246-2469</orcidid><orcidid>https://orcid.org/0000-0003-1181-9698</orcidid><orcidid>https://orcid.org/0000-0002-0428-427X</orcidid><orcidid>https://orcid.org/0000-0003-1511-1515</orcidid><orcidid>https://orcid.org/0000-0002-8047-9458</orcidid><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0003-0032-9052</orcidid><orcidid>https://orcid.org/0000-0002-5826-3546</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (13), p.1-10 |
issn | 0027-8424 1091-6490 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8020791 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adult Biological Sciences Brain Mapping Executive Function - physiology Female Gyrus Cinguli - cytology Gyrus Cinguli - diagnostic imaging Gyrus Cinguli - physiology Healthy Volunteers Humans Magnetic Resonance Imaging Male Nerve Net - physiology Neuronal Plasticity - physiology Rest - physiology |
title | Cingulo-opercular control network and disused motor circuits joined in standby mode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cingulo-opercular%20control%20network%20and%20disused%20motor%20circuits%20joined%20in%20standby%20mode&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Newbold,%20Dillan%20J.&rft.date=2021-03-30&rft.volume=118&rft.issue=13&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2019128118&rft_dat=%3Cjstor_pubme%3E27039815%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504351122&rft_id=info:pmid/33753484&rft_jstor_id=27039815&rfr_iscdi=true |