Pattern-recognition receptors are required for NLR-mediated plant immunity

The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-04, Vol.592 (7852), p.105-109
Hauptverfasser: Yuan, Minhang, Jiang, Zeyu, Bi, Guozhi, Nomura, Kinya, Liu, Menghui, Wang, Yiping, Cai, Boying, Zhou, Jian-Min, He, Sheng Yang, Xin, Xiu-Fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 109
container_issue 7852
container_start_page 105
container_title Nature (London)
container_volume 592
creator Yuan, Minhang
Jiang, Zeyu
Bi, Guozhi
Nomura, Kinya
Liu, Menghui
Wang, Yiping
Cai, Boying
Zhou, Jian-Min
He, Sheng Yang
Xin, Xiu-Fang
description The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs) 1 – 4 . PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades 5 , 6 . Here we show that Arabidopsis PRR and PRR co-receptor mutants— fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants—are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI. Bacteria elicit two distinct immune responses in Arabidopsis thaliana , mediated by diverse signalling receptors but working in a synergistic manner.
doi_str_mv 10.1038/s41586-021-03316-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509035543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-a9e20503c86976cc6f814604429ffaaef16b9cb9ea5d0d88091382179a6409a53</originalsourceid><addsrcrecordid>eNp9kctuFDEQRS0EIpPAD7BALbFhYyi_qu0NEopCAI0ShJK15fG4B0fT7YntRsrfx2FCICxY-VGnruv6EvKKwTsGQr8vkimNFDijIARDik_IgskeqUTdPyULAK4paIEH5LCUKwBQrJfPyYEQaLiSuCBfv7laQ55oDj5tplhjmrq2D7uaculcDu10Pccc1t2Qcne2_E7HsI6utovd1k21i-M4t8abF-TZ4LYlvLxfj8jlp5OL4890eX765fjjknrV95U6EzgoEF6j6dF7HDSTCFJyMwzOhYHhyviVCU6tYa01GCY0Z71xKME4JY7Ih73ubl61UXyYanZbu8txdPnGJhft48oUf9hN-mk1MOwlawJv7wVyup5DqXaMxYdtcxPSXCxX0L4XueYNffMPepXmPDV7d5QBoZQUjeJ7yudUSg7DwzAM7F1Udh-VbVHZX1FZbE2v_7bx0PI7mwaIPVBaadqE_Oft_8jeAinIn0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509035543</pqid></control><display><type>article</type><title>Pattern-recognition receptors are required for NLR-mediated plant immunity</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Yuan, Minhang ; Jiang, Zeyu ; Bi, Guozhi ; Nomura, Kinya ; Liu, Menghui ; Wang, Yiping ; Cai, Boying ; Zhou, Jian-Min ; He, Sheng Yang ; Xin, Xiu-Fang</creator><creatorcontrib>Yuan, Minhang ; Jiang, Zeyu ; Bi, Guozhi ; Nomura, Kinya ; Liu, Menghui ; Wang, Yiping ; Cai, Boying ; Zhou, Jian-Min ; He, Sheng Yang ; Xin, Xiu-Fang</creatorcontrib><description>The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs) 1 – 4 . PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades 5 , 6 . Here we show that Arabidopsis PRR and PRR co-receptor mutants— fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants—are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI. Bacteria elicit two distinct immune responses in Arabidopsis thaliana , mediated by diverse signalling receptors but working in a synergistic manner.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03316-6</identifier><identifier>PMID: 33692546</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14/19 ; 14/5 ; 38/39 ; 38/90 ; 631/449/2169/2107 ; 631/449/2169/2673 ; 631/449/2661/2666 ; 631/449/2675 ; 82 ; 82/1 ; 82/29 ; 82/80 ; 96 ; 96/34 ; Arabidopsis - genetics ; Arabidopsis - immunology ; Arabidopsis - microbiology ; Arabidopsis Proteins - metabolism ; Bacteria ; Bacterial diseases ; Bacterial infections ; Cell surface ; Crop fields ; Gene expression ; Humanities and Social Sciences ; Immune system ; Immunity ; Innate immunity ; Kinases ; Leucine ; Microorganisms ; multidisciplinary ; Mutants ; NAD(P)H oxidase ; NADPH Oxidases - metabolism ; NLR Proteins - immunology ; Nucleotides ; Oxygen ; Pathogens ; Pattern recognition ; Plant Diseases - genetics ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant immunity ; Plant Immunity - immunology ; Protein Serine-Threonine Kinases - metabolism ; Proteins ; Pseudomonas syringae - immunology ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Receptors ; Receptors, Pattern Recognition - immunology ; Science ; Science (multidisciplinary) ; Signal Transduction - immunology ; Signaling ; Transcription</subject><ispartof>Nature (London), 2021-04, Vol.592 (7852), p.105-109</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><rights>Copyright Nature Publishing Group Apr 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-a9e20503c86976cc6f814604429ffaaef16b9cb9ea5d0d88091382179a6409a53</citedby><cites>FETCH-LOGICAL-c577t-a9e20503c86976cc6f814604429ffaaef16b9cb9ea5d0d88091382179a6409a53</cites><orcidid>0000-0002-9943-2975 ; 0000-0002-4037-3528</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03316-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03316-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33692546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yuan, Minhang</creatorcontrib><creatorcontrib>Jiang, Zeyu</creatorcontrib><creatorcontrib>Bi, Guozhi</creatorcontrib><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Liu, Menghui</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Cai, Boying</creatorcontrib><creatorcontrib>Zhou, Jian-Min</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><creatorcontrib>Xin, Xiu-Fang</creatorcontrib><title>Pattern-recognition receptors are required for NLR-mediated plant immunity</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs) 1 – 4 . PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades 5 , 6 . Here we show that Arabidopsis PRR and PRR co-receptor mutants— fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants—are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI. Bacteria elicit two distinct immune responses in Arabidopsis thaliana , mediated by diverse signalling receptors but working in a synergistic manner.</description><subject>14/19</subject><subject>14/5</subject><subject>38/39</subject><subject>38/90</subject><subject>631/449/2169/2107</subject><subject>631/449/2169/2673</subject><subject>631/449/2661/2666</subject><subject>631/449/2675</subject><subject>82</subject><subject>82/1</subject><subject>82/29</subject><subject>82/80</subject><subject>96</subject><subject>96/34</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - immunology</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Bacteria</subject><subject>Bacterial diseases</subject><subject>Bacterial infections</subject><subject>Cell surface</subject><subject>Crop fields</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Immune system</subject><subject>Immunity</subject><subject>Innate immunity</subject><subject>Kinases</subject><subject>Leucine</subject><subject>Microorganisms</subject><subject>multidisciplinary</subject><subject>Mutants</subject><subject>NAD(P)H oxidase</subject><subject>NADPH Oxidases - metabolism</subject><subject>NLR Proteins - immunology</subject><subject>Nucleotides</subject><subject>Oxygen</subject><subject>Pathogens</subject><subject>Pattern recognition</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant immunity</subject><subject>Plant Immunity - immunology</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>Pseudomonas syringae - immunology</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Receptors</subject><subject>Receptors, Pattern Recognition - immunology</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction - immunology</subject><subject>Signaling</subject><subject>Transcription</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kctuFDEQRS0EIpPAD7BALbFhYyi_qu0NEopCAI0ShJK15fG4B0fT7YntRsrfx2FCICxY-VGnruv6EvKKwTsGQr8vkimNFDijIARDik_IgskeqUTdPyULAK4paIEH5LCUKwBQrJfPyYEQaLiSuCBfv7laQ55oDj5tplhjmrq2D7uaculcDu10Pccc1t2Qcne2_E7HsI6utovd1k21i-M4t8abF-TZ4LYlvLxfj8jlp5OL4890eX765fjjknrV95U6EzgoEF6j6dF7HDSTCFJyMwzOhYHhyviVCU6tYa01GCY0Z71xKME4JY7Ih73ubl61UXyYanZbu8txdPnGJhft48oUf9hN-mk1MOwlawJv7wVyup5DqXaMxYdtcxPSXCxX0L4XueYNffMPepXmPDV7d5QBoZQUjeJ7yudUSg7DwzAM7F1Udh-VbVHZX1FZbE2v_7bx0PI7mwaIPVBaadqE_Oft_8jeAinIn0E</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Yuan, Minhang</creator><creator>Jiang, Zeyu</creator><creator>Bi, Guozhi</creator><creator>Nomura, Kinya</creator><creator>Liu, Menghui</creator><creator>Wang, Yiping</creator><creator>Cai, Boying</creator><creator>Zhou, Jian-Min</creator><creator>He, Sheng Yang</creator><creator>Xin, Xiu-Fang</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9943-2975</orcidid><orcidid>https://orcid.org/0000-0002-4037-3528</orcidid></search><sort><creationdate>20210401</creationdate><title>Pattern-recognition receptors are required for NLR-mediated plant immunity</title><author>Yuan, Minhang ; Jiang, Zeyu ; Bi, Guozhi ; Nomura, Kinya ; Liu, Menghui ; Wang, Yiping ; Cai, Boying ; Zhou, Jian-Min ; He, Sheng Yang ; Xin, Xiu-Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-a9e20503c86976cc6f814604429ffaaef16b9cb9ea5d0d88091382179a6409a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14/19</topic><topic>14/5</topic><topic>38/39</topic><topic>38/90</topic><topic>631/449/2169/2107</topic><topic>631/449/2169/2673</topic><topic>631/449/2661/2666</topic><topic>631/449/2675</topic><topic>82</topic><topic>82/1</topic><topic>82/29</topic><topic>82/80</topic><topic>96</topic><topic>96/34</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - immunology</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Bacteria</topic><topic>Bacterial diseases</topic><topic>Bacterial infections</topic><topic>Cell surface</topic><topic>Crop fields</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Immune system</topic><topic>Immunity</topic><topic>Innate immunity</topic><topic>Kinases</topic><topic>Leucine</topic><topic>Microorganisms</topic><topic>multidisciplinary</topic><topic>Mutants</topic><topic>NAD(P)H oxidase</topic><topic>NADPH Oxidases - metabolism</topic><topic>NLR Proteins - immunology</topic><topic>Nucleotides</topic><topic>Oxygen</topic><topic>Pathogens</topic><topic>Pattern recognition</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant immunity</topic><topic>Plant Immunity - immunology</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>Pseudomonas syringae - immunology</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Receptors</topic><topic>Receptors, Pattern Recognition - immunology</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction - immunology</topic><topic>Signaling</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuan, Minhang</creatorcontrib><creatorcontrib>Jiang, Zeyu</creatorcontrib><creatorcontrib>Bi, Guozhi</creatorcontrib><creatorcontrib>Nomura, Kinya</creatorcontrib><creatorcontrib>Liu, Menghui</creatorcontrib><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Cai, Boying</creatorcontrib><creatorcontrib>Zhou, Jian-Min</creatorcontrib><creatorcontrib>He, Sheng Yang</creatorcontrib><creatorcontrib>Xin, Xiu-Fang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuan, Minhang</au><au>Jiang, Zeyu</au><au>Bi, Guozhi</au><au>Nomura, Kinya</au><au>Liu, Menghui</au><au>Wang, Yiping</au><au>Cai, Boying</au><au>Zhou, Jian-Min</au><au>He, Sheng Yang</au><au>Xin, Xiu-Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pattern-recognition receptors are required for NLR-mediated plant immunity</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>592</volume><issue>7852</issue><spage>105</spage><epage>109</epage><pages>105-109</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs) 1 – 4 . PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades 5 , 6 . Here we show that Arabidopsis PRR and PRR co-receptor mutants— fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants—are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI. Bacteria elicit two distinct immune responses in Arabidopsis thaliana , mediated by diverse signalling receptors but working in a synergistic manner.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33692546</pmid><doi>10.1038/s41586-021-03316-6</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9943-2975</orcidid><orcidid>https://orcid.org/0000-0002-4037-3528</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-04, Vol.592 (7852), p.105-109
issn 0028-0836
1476-4687
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016741
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 14/19
14/5
38/39
38/90
631/449/2169/2107
631/449/2169/2673
631/449/2661/2666
631/449/2675
82
82/1
82/29
82/80
96
96/34
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - metabolism
Bacteria
Bacterial diseases
Bacterial infections
Cell surface
Crop fields
Gene expression
Humanities and Social Sciences
Immune system
Immunity
Innate immunity
Kinases
Leucine
Microorganisms
multidisciplinary
Mutants
NAD(P)H oxidase
NADPH Oxidases - metabolism
NLR Proteins - immunology
Nucleotides
Oxygen
Pathogens
Pattern recognition
Plant Diseases - genetics
Plant Diseases - immunology
Plant Diseases - microbiology
Plant immunity
Plant Immunity - immunology
Protein Serine-Threonine Kinases - metabolism
Proteins
Pseudomonas syringae - immunology
Reactive oxygen species
Reactive Oxygen Species - metabolism
Receptors
Receptors, Pattern Recognition - immunology
Science
Science (multidisciplinary)
Signal Transduction - immunology
Signaling
Transcription
title Pattern-recognition receptors are required for NLR-mediated plant immunity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pattern-recognition%20receptors%20are%20required%20for%20NLR-mediated%20plant%20immunity&rft.jtitle=Nature%20(London)&rft.au=Yuan,%20Minhang&rft.date=2021-04-01&rft.volume=592&rft.issue=7852&rft.spage=105&rft.epage=109&rft.pages=105-109&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03316-6&rft_dat=%3Cproquest_pubme%3E2509035543%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509035543&rft_id=info:pmid/33692546&rfr_iscdi=true