Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles

To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains ( S xray ) and the bending modulus of the lipid bilayers ( K C ). Samples contained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2021-03, Vol.17 (12), p.3358-3366
Hauptverfasser: Loney, Ryan W, Brandner, Bret, Dagan, Maayan P, Smith, Paige N, Roche, Megan, Fritz, Jonathan R, Hall, Stephen B, Tristram-Nagle, Stephanie A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3366
container_issue 12
container_start_page 3358
container_title Soft matter
container_volume 17
creator Loney, Ryan W
Brandner, Bret
Dagan, Maayan P
Smith, Paige N
Roche, Megan
Fritz, Jonathan R
Hall, Stephen B
Tristram-Nagle, Stephanie A
description To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains ( S xray ) and the bending modulus of the lipid bilayers ( K C ). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in S xray that correlated well with K C . The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in S xray and K C for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m −1 . The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m −1 for both lipids. The results correlated poorly with the changes in S xray and K C in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles. We used X-ray diffuse scattering to determine the bending modulus of lipid bilayers and an order parameter of the acyl chains to establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface.
doi_str_mv 10.1039/d0sm02223c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2494296831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2a5a42edf2d6ebc2da47fcbcd1320126ff0dbe50215b1cbc602e0c55c131cc863</originalsourceid><addsrcrecordid>eNqNkktv1TAQhSMEoqWwYQ-yxAaBLvgVJ3eDhNLykIpYABK7yBlPGleJHWynVVb8dXy55fJYsfLI_s7ozBwXxUNGXzAqti8NjRPlnAu4VRyzSsqNqmV9-1CLr0fFvRgvKRW1ZOpucSSEEnRbl8fF92bQ7gIjsY5MOHVBOyQ46pgs2LQS0EtEQ7qVpAHJsJrg58F3FkhcQq8haZfIHHxC6yIBH0IWJySz92FcybVNA9Em-jAn6x3xPRntbA25wmhhxHi_uNPrMeKDm_Ok-PLm7HPzbnP-8e375vX5BqQq04brUkuOpudGYQfcaFn10IFhglPGVd9T02FJOSs7lu8V5UihLIEJBlArcVK82vedl25CA-hS0GM7BzvpsLZe2_bvF2eH9sJftTVlquK7Bk9vGgT_bcGY2slGwHHMC_NLbLncSr7Ny2YZffIPeumX4PJ4LS9pJbNjVmfq2Z6C4GMM2B_MMNrucm1P6acPP3NtMvz4T_sH9FeQGaj3wDV2vo9g0QEeMEqpEmWlpMoVrRqb9C6Oxi8uZenz_5dm-tGeDhEO0O8fKH4AOkXM7A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2507420118</pqid></control><display><type>article</type><title>Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Loney, Ryan W ; Brandner, Bret ; Dagan, Maayan P ; Smith, Paige N ; Roche, Megan ; Fritz, Jonathan R ; Hall, Stephen B ; Tristram-Nagle, Stephanie A</creator><creatorcontrib>Loney, Ryan W ; Brandner, Bret ; Dagan, Maayan P ; Smith, Paige N ; Roche, Megan ; Fritz, Jonathan R ; Hall, Stephen B ; Tristram-Nagle, Stephanie A</creatorcontrib><description>To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains ( S xray ) and the bending modulus of the lipid bilayers ( K C ). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&amp;PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in S xray that correlated well with K C . The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in S xray and K C for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m −1 . The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m −1 for both lipids. The results correlated poorly with the changes in S xray and K C in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles. We used X-ray diffuse scattering to determine the bending modulus of lipid bilayers and an order parameter of the acyl chains to establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d0sm02223c</identifier><identifier>PMID: 33630985</identifier><language>eng</language><publisher>CAMBRIDGE: Royal Soc Chemistry</publisher><subject>Adsorption ; Bending modulus ; Chains ; Chemistry ; Chemistry, Physical ; Correlation analysis ; Dosage ; Elasticity ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Lipid bilayers ; Lipids ; Materials Science ; Materials Science, Multidisciplinary ; Membrane elasticity ; Order parameters ; Phospholipids ; Physical Sciences ; Physics ; Physics, Multidisciplinary ; Polymer Science ; Proteins ; Pulmonary Surfactants ; Science &amp; Technology ; Surface chemistry ; Surface tension ; Surface-Active Agents ; Surfactants ; Technology ; Vesicles</subject><ispartof>Soft matter, 2021-03, Vol.17 (12), p.3358-3366</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>2</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000635764600007</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c465t-2a5a42edf2d6ebc2da47fcbcd1320126ff0dbe50215b1cbc602e0c55c131cc863</citedby><cites>FETCH-LOGICAL-c465t-2a5a42edf2d6ebc2da47fcbcd1320126ff0dbe50215b1cbc602e0c55c131cc863</cites><orcidid>0000-0002-7278-0304 ; 0000-0003-4608-8928 ; 0000-0002-6009-100X ; 0000-0001-8870-2143 ; 0000-0003-2271-7056</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932,39265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630985$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Loney, Ryan W</creatorcontrib><creatorcontrib>Brandner, Bret</creatorcontrib><creatorcontrib>Dagan, Maayan P</creatorcontrib><creatorcontrib>Smith, Paige N</creatorcontrib><creatorcontrib>Roche, Megan</creatorcontrib><creatorcontrib>Fritz, Jonathan R</creatorcontrib><creatorcontrib>Hall, Stephen B</creatorcontrib><creatorcontrib>Tristram-Nagle, Stephanie A</creatorcontrib><title>Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles</title><title>Soft matter</title><addtitle>SOFT MATTER</addtitle><addtitle>Soft Matter</addtitle><description>To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains ( S xray ) and the bending modulus of the lipid bilayers ( K C ). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&amp;PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in S xray that correlated well with K C . The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in S xray and K C for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m −1 . The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m −1 for both lipids. The results correlated poorly with the changes in S xray and K C in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles. We used X-ray diffuse scattering to determine the bending modulus of lipid bilayers and an order parameter of the acyl chains to establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface.</description><subject>Adsorption</subject><subject>Bending modulus</subject><subject>Chains</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Correlation analysis</subject><subject>Dosage</subject><subject>Elasticity</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Membrane elasticity</subject><subject>Order parameters</subject><subject>Phospholipids</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Multidisciplinary</subject><subject>Polymer Science</subject><subject>Proteins</subject><subject>Pulmonary Surfactants</subject><subject>Science &amp; Technology</subject><subject>Surface chemistry</subject><subject>Surface tension</subject><subject>Surface-Active Agents</subject><subject>Surfactants</subject><subject>Technology</subject><subject>Vesicles</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkktv1TAQhSMEoqWwYQ-yxAaBLvgVJ3eDhNLykIpYABK7yBlPGleJHWynVVb8dXy55fJYsfLI_s7ozBwXxUNGXzAqti8NjRPlnAu4VRyzSsqNqmV9-1CLr0fFvRgvKRW1ZOpucSSEEnRbl8fF92bQ7gIjsY5MOHVBOyQ46pgs2LQS0EtEQ7qVpAHJsJrg58F3FkhcQq8haZfIHHxC6yIBH0IWJySz92FcybVNA9Em-jAn6x3xPRntbA25wmhhxHi_uNPrMeKDm_Ok-PLm7HPzbnP-8e375vX5BqQq04brUkuOpudGYQfcaFn10IFhglPGVd9T02FJOSs7lu8V5UihLIEJBlArcVK82vedl25CA-hS0GM7BzvpsLZe2_bvF2eH9sJftTVlquK7Bk9vGgT_bcGY2slGwHHMC_NLbLncSr7Ny2YZffIPeumX4PJ4LS9pJbNjVmfq2Z6C4GMM2B_MMNrucm1P6acPP3NtMvz4T_sH9FeQGaj3wDV2vo9g0QEeMEqpEmWlpMoVrRqb9C6Oxi8uZenz_5dm-tGeDhEO0O8fKH4AOkXM7A</recordid><startdate>20210328</startdate><enddate>20210328</enddate><creator>Loney, Ryan W</creator><creator>Brandner, Bret</creator><creator>Dagan, Maayan P</creator><creator>Smith, Paige N</creator><creator>Roche, Megan</creator><creator>Fritz, Jonathan R</creator><creator>Hall, Stephen B</creator><creator>Tristram-Nagle, Stephanie A</creator><general>Royal Soc Chemistry</general><general>Royal Society of Chemistry</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7278-0304</orcidid><orcidid>https://orcid.org/0000-0003-4608-8928</orcidid><orcidid>https://orcid.org/0000-0002-6009-100X</orcidid><orcidid>https://orcid.org/0000-0001-8870-2143</orcidid><orcidid>https://orcid.org/0000-0003-2271-7056</orcidid></search><sort><creationdate>20210328</creationdate><title>Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles</title><author>Loney, Ryan W ; Brandner, Bret ; Dagan, Maayan P ; Smith, Paige N ; Roche, Megan ; Fritz, Jonathan R ; Hall, Stephen B ; Tristram-Nagle, Stephanie A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2a5a42edf2d6ebc2da47fcbcd1320126ff0dbe50215b1cbc602e0c55c131cc863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Bending modulus</topic><topic>Chains</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Correlation analysis</topic><topic>Dosage</topic><topic>Elasticity</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Membrane elasticity</topic><topic>Order parameters</topic><topic>Phospholipids</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Multidisciplinary</topic><topic>Polymer Science</topic><topic>Proteins</topic><topic>Pulmonary Surfactants</topic><topic>Science &amp; Technology</topic><topic>Surface chemistry</topic><topic>Surface tension</topic><topic>Surface-Active Agents</topic><topic>Surfactants</topic><topic>Technology</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loney, Ryan W</creatorcontrib><creatorcontrib>Brandner, Bret</creatorcontrib><creatorcontrib>Dagan, Maayan P</creatorcontrib><creatorcontrib>Smith, Paige N</creatorcontrib><creatorcontrib>Roche, Megan</creatorcontrib><creatorcontrib>Fritz, Jonathan R</creatorcontrib><creatorcontrib>Hall, Stephen B</creatorcontrib><creatorcontrib>Tristram-Nagle, Stephanie A</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loney, Ryan W</au><au>Brandner, Bret</au><au>Dagan, Maayan P</au><au>Smith, Paige N</au><au>Roche, Megan</au><au>Fritz, Jonathan R</au><au>Hall, Stephen B</au><au>Tristram-Nagle, Stephanie A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles</atitle><jtitle>Soft matter</jtitle><stitle>SOFT MATTER</stitle><addtitle>Soft Matter</addtitle><date>2021-03-28</date><risdate>2021</risdate><volume>17</volume><issue>12</issue><spage>3358</spage><epage>3366</epage><pages>3358-3366</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>To establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface, we used X-ray diffuse scattering (XDS) to determine an order parameter of the lipid chains ( S xray ) and the bending modulus of the lipid bilayers ( K C ). Samples contained different amounts of the proteins with two sets of lipids. Dioleoylphosphatidylcholine (DOPC) provided a simple, well characterized model system. The nonpolar and phospholipids (N&amp;PL) from extracted calf surfactant provided the biological mix of lipids. For both systems, the proteins produced changes in S xray that correlated well with K C . The dose-response to the proteins, however, differed. Small amounts of protein generated large decreases in S xray and K C for DOPC that progressed monotonically. The changes for the surfactant lipids were erratic. Our studies then tested whether the proteins produced correlated effects on adsorption. Experiments measured the initial fall in surface tension during adsorption to a constant surface area, and then expansion of the interface during adsorption at a constant surface tension of 40 mN m −1 . The proteins produced a sigmoidal increase in the rate of adsorption at 40 mN m −1 for both lipids. The results correlated poorly with the changes in S xray and K C in both cases. Disordering of the lipid chains produced by the proteins, and the softening of the bilayers, fail to explain how the proteins promote adsorption of lipid vesicles. We used X-ray diffuse scattering to determine the bending modulus of lipid bilayers and an order parameter of the acyl chains to establish how the hydrophobic surfactant proteins, SP-B and SP-C, promote adsorption of lipids to an air/water interface.</abstract><cop>CAMBRIDGE</cop><pub>Royal Soc Chemistry</pub><pmid>33630985</pmid><doi>10.1039/d0sm02223c</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7278-0304</orcidid><orcidid>https://orcid.org/0000-0003-4608-8928</orcidid><orcidid>https://orcid.org/0000-0002-6009-100X</orcidid><orcidid>https://orcid.org/0000-0001-8870-2143</orcidid><orcidid>https://orcid.org/0000-0003-2271-7056</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2021-03, Vol.17 (12), p.3358-3366
issn 1744-683X
1744-6848
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016726
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Adsorption
Bending modulus
Chains
Chemistry
Chemistry, Physical
Correlation analysis
Dosage
Elasticity
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Lipid bilayers
Lipids
Materials Science
Materials Science, Multidisciplinary
Membrane elasticity
Order parameters
Phospholipids
Physical Sciences
Physics
Physics, Multidisciplinary
Polymer Science
Proteins
Pulmonary Surfactants
Science & Technology
Surface chemistry
Surface tension
Surface-Active Agents
Surfactants
Technology
Vesicles
title Changes in membrane elasticity caused by the hydrophobic surfactant proteins correlate poorly with adsorption of lipid vesicles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20membrane%20elasticity%20caused%20by%20the%20hydrophobic%20surfactant%20proteins%20correlate%20poorly%20with%20adsorption%20of%20lipid%20vesicles&rft.jtitle=Soft%20matter&rft.au=Loney,%20Ryan%20W&rft.date=2021-03-28&rft.volume=17&rft.issue=12&rft.spage=3358&rft.epage=3366&rft.pages=3358-3366&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d0sm02223c&rft_dat=%3Cproquest_pubme%3E2494296831%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2507420118&rft_id=info:pmid/33630985&rfr_iscdi=true