A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests

Abstract Motivation Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2021-04, Vol.36 (22-23), p.5432-5438
Hauptverfasser: Hecker, Julian, Townes, F William, Kachroo, Priyadarshini, Laurie, Cecelia, Lasky-Su, Jessica, Ziniti, John, Cho, Michael H, Weiss, Scott T, Laird, Nan M, Lange, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5438
container_issue 22-23
container_start_page 5432
container_title Bioinformatics (Oxford, England)
container_volume 36
creator Hecker, Julian
Townes, F William
Kachroo, Priyadarshini
Laurie, Cecelia
Lasky-Su, Jessica
Ziniti, John
Cho, Michael H
Weiss, Scott T
Laird, Nan M
Lange, Christoph
description Abstract Motivation Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. Results In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. Availability and implementation FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for ‘NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica’ is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. Supplementary information Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btaa1055
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btaa1055</oup_id><sourcerecordid>3128014053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4e93d3d2a0540e911263fbd4bf40b56c22d1059cc9b56771ee8a465d0767c8383</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1ERUvhFcASmy5I6_8kG6RRxZ9aiQVlbd3YzoxLYgc7KZrH4I3xaNpRy4rVtXW-e3yvD0JvKTmnpOUXnY8-9DGNMHuTL7oZgBIpn6ETylVdiYbS54cz4cfoZc63hBBJpHqBjjkvimTsBP1Z4SX4fuvDGvcJRvc7pp-4OOMEyeE7SB7CjCHnaHx5LAY8uzzvcB9wD6MftlUH2VlsXfbrkN8XwQyL3SEbv964hE3yZUyfRwzTlCKYjSvY96vVTSkQLO6WZN3eOb9CRz0M2b2-r6fox6ePN5dfqutvn79erq4rI5pmroRrueWWAZGCuJZSpnjfWdH1gnRSGcZs-ZHWmLbc6po614BQ0pJa1abhDT9FH_a-09KNzhoX5gSDnpIfIW11BK-fKsFv9Dre6YZQJdTO4OzeIMVfSxldjz4bNwwQXFyyZqLmgtZKyYK--we9jUsKZT3NKSuGgkheqHpPmRRzTq4_DEOJ3sWun8auH2IvnW8e73Loe8i5AGwPxGX6b9e_AbTDuQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3128014053</pqid></control><display><type>article</type><title>A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests</title><source>Oxford Journals Open Access Collection</source><creator>Hecker, Julian ; Townes, F William ; Kachroo, Priyadarshini ; Laurie, Cecelia ; Lasky-Su, Jessica ; Ziniti, John ; Cho, Michael H ; Weiss, Scott T ; Laird, Nan M ; Lange, Christoph</creator><creatorcontrib>Hecker, Julian ; Townes, F William ; Kachroo, Priyadarshini ; Laurie, Cecelia ; Lasky-Su, Jessica ; Ziniti, John ; Cho, Michael H ; Weiss, Scott T ; Laird, Nan M ; Lange, Christoph</creatorcontrib><description>Abstract Motivation Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. Results In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. Availability and implementation FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for ‘NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica’ is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. Supplementary information Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btaa1055</identifier><identifier>PMID: 33367522</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Approximation ; Asthma ; Asymptotic methods ; Asymptotic properties ; Availability ; Bioinformatics ; Epidemiology ; Family studies ; Gene sequencing ; Genomes ; Genotypes ; Haplotypes ; Offspring ; Original Papers ; Population genetics ; Population studies ; Statistical analysis ; Statistical tests ; Statistics ; Whole genome sequencing</subject><ispartof>Bioinformatics (Oxford, England), 2021-04, Vol.36 (22-23), p.5432-5438</ispartof><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><rights>The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4e93d3d2a0540e911263fbd4bf40b56c22d1059cc9b56771ee8a465d0767c8383</citedby><cites>FETCH-LOGICAL-c488t-4e93d3d2a0540e911263fbd4bf40b56c22d1059cc9b56771ee8a465d0767c8383</cites><orcidid>0000-0001-7918-089X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016468/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8016468/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btaa1055$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33367522$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hecker, Julian</creatorcontrib><creatorcontrib>Townes, F William</creatorcontrib><creatorcontrib>Kachroo, Priyadarshini</creatorcontrib><creatorcontrib>Laurie, Cecelia</creatorcontrib><creatorcontrib>Lasky-Su, Jessica</creatorcontrib><creatorcontrib>Ziniti, John</creatorcontrib><creatorcontrib>Cho, Michael H</creatorcontrib><creatorcontrib>Weiss, Scott T</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><creatorcontrib>Lange, Christoph</creatorcontrib><title>A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. Results In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. Availability and implementation FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for ‘NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica’ is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. Supplementary information Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Asthma</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Availability</subject><subject>Bioinformatics</subject><subject>Epidemiology</subject><subject>Family studies</subject><subject>Gene sequencing</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Haplotypes</subject><subject>Offspring</subject><subject>Original Papers</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Whole genome sequencing</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS1ERUvhFcASmy5I6_8kG6RRxZ9aiQVlbd3YzoxLYgc7KZrH4I3xaNpRy4rVtXW-e3yvD0JvKTmnpOUXnY8-9DGNMHuTL7oZgBIpn6ETylVdiYbS54cz4cfoZc63hBBJpHqBjjkvimTsBP1Z4SX4fuvDGvcJRvc7pp-4OOMEyeE7SB7CjCHnaHx5LAY8uzzvcB9wD6MftlUH2VlsXfbrkN8XwQyL3SEbv964hE3yZUyfRwzTlCKYjSvY96vVTSkQLO6WZN3eOb9CRz0M2b2-r6fox6ePN5dfqutvn79erq4rI5pmroRrueWWAZGCuJZSpnjfWdH1gnRSGcZs-ZHWmLbc6po614BQ0pJa1abhDT9FH_a-09KNzhoX5gSDnpIfIW11BK-fKsFv9Dre6YZQJdTO4OzeIMVfSxldjz4bNwwQXFyyZqLmgtZKyYK--we9jUsKZT3NKSuGgkheqHpPmRRzTq4_DEOJ3sWun8auH2IvnW8e73Loe8i5AGwPxGX6b9e_AbTDuQ</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Hecker, Julian</creator><creator>Townes, F William</creator><creator>Kachroo, Priyadarshini</creator><creator>Laurie, Cecelia</creator><creator>Lasky-Su, Jessica</creator><creator>Ziniti, John</creator><creator>Cho, Michael H</creator><creator>Weiss, Scott T</creator><creator>Laird, Nan M</creator><creator>Lange, Christoph</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7918-089X</orcidid></search><sort><creationdate>20210401</creationdate><title>A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests</title><author>Hecker, Julian ; Townes, F William ; Kachroo, Priyadarshini ; Laurie, Cecelia ; Lasky-Su, Jessica ; Ziniti, John ; Cho, Michael H ; Weiss, Scott T ; Laird, Nan M ; Lange, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4e93d3d2a0540e911263fbd4bf40b56c22d1059cc9b56771ee8a465d0767c8383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Asthma</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Availability</topic><topic>Bioinformatics</topic><topic>Epidemiology</topic><topic>Family studies</topic><topic>Gene sequencing</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Haplotypes</topic><topic>Offspring</topic><topic>Original Papers</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hecker, Julian</creatorcontrib><creatorcontrib>Townes, F William</creatorcontrib><creatorcontrib>Kachroo, Priyadarshini</creatorcontrib><creatorcontrib>Laurie, Cecelia</creatorcontrib><creatorcontrib>Lasky-Su, Jessica</creatorcontrib><creatorcontrib>Ziniti, John</creatorcontrib><creatorcontrib>Cho, Michael H</creatorcontrib><creatorcontrib>Weiss, Scott T</creatorcontrib><creatorcontrib>Laird, Nan M</creatorcontrib><creatorcontrib>Lange, Christoph</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hecker, Julian</au><au>Townes, F William</au><au>Kachroo, Priyadarshini</au><au>Laurie, Cecelia</au><au>Lasky-Su, Jessica</au><au>Ziniti, John</au><au>Cho, Michael H</au><au>Weiss, Scott T</au><au>Laird, Nan M</au><au>Lange, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>36</volume><issue>22-23</issue><spage>5432</spage><epage>5438</epage><pages>5432-5438</pages><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation Analysis of rare variants in family-based studies remains a challenge. Transmission-based approaches provide robustness against population stratification, but the evaluation of the significance of test statistics based on asymptotic theory can be imprecise. Also, power will depend heavily on the choice of the test statistic and on the underlying genetic architecture of the locus, which will be generally unknown. Results In our proposed framework, we utilize the FBAT haplotype algorithm to obtain the conditional offspring genotype distribution under the null hypothesis given the sufficient statistic. Based on this conditional offspring genotype distribution, the significance of virtually any association test statistic can be evaluated based on simulations or exact computations, without the need for asymptotic approximations. Besides standard linear burden-type statistics, this enables our approach to also evaluate other test statistics such as variance components statistics, higher criticism approaches, and maximum-single-variant-statistics, where asymptotic theory might be involved or does not provide accurate approximations for rare variant data. Based on these P-values, combined test statistics such as the aggregated Cauchy association test (ACAT) can also be utilized. In simulation studies, we show that our framework outperforms existing approaches for family-based studies in several scenarios. We also applied our methodology to a TOPMed whole-genome sequencing dataset with 897 asthmatic trios from Costa Rica. Availability and implementation FBAT software is available at https://sites.google.com/view/fbatwebpage. Simulation code is available at https://github.com/julianhecker/FBAT_rare_variant_test_simulations. Whole-genome sequencing data for ‘NHLBI TOPMed: The Genetic Epidemiology of Asthma in Costa Rica’ is available at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000988.v4.p1. Supplementary information Supplementary data are available at Bioinformatics online.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33367522</pmid><doi>10.1093/bioinformatics/btaa1055</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7918-089X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2021-04, Vol.36 (22-23), p.5432-5438
issn 1367-4803
1367-4811
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8016468
source Oxford Journals Open Access Collection
subjects Algorithms
Approximation
Asthma
Asymptotic methods
Asymptotic properties
Availability
Bioinformatics
Epidemiology
Family studies
Gene sequencing
Genomes
Genotypes
Haplotypes
Offspring
Original Papers
Population genetics
Population studies
Statistical analysis
Statistical tests
Statistics
Whole genome sequencing
title A unifying framework for rare variant association testing in family-based designs, including higher criticism approaches, SKATs, and burden tests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unifying%20framework%20for%20rare%20variant%20association%20testing%20in%20family-based%20designs,%20including%20higher%20criticism%20approaches,%20SKATs,%20and%20burden%20tests&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Hecker,%20Julian&rft.date=2021-04-01&rft.volume=36&rft.issue=22-23&rft.spage=5432&rft.epage=5438&rft.pages=5432-5438&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btaa1055&rft_dat=%3Cproquest_TOX%3E3128014053%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3128014053&rft_id=info:pmid/33367522&rft_oup_id=10.1093/bioinformatics/btaa1055&rfr_iscdi=true