Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data
We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produce...
Gespeichert in:
Veröffentlicht in: | Genome research 2021-04, Vol.31 (4), p.645-658 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 658 |
---|---|
container_issue | 4 |
container_start_page | 645 |
container_title | Genome research |
container_volume | 31 |
creator | Parker, Matthew D Lindsey, Benjamin B Leary, Shay Gaudieri, Silvana Chopra, Abha Wyles, Matthew Angyal, Adrienn Green, Luke R Parsons, Paul Tucker, Rachel M Brown, Rebecca Groves, Danielle Johnson, Katie Carrilero, Laura Heffer, Joe Partridge, David G Evans, Cariad Raza, Mohammad Keeley, Alexander J Smith, Nikki Filipe, Ana Da Silva Shepherd, James G Davis, Chris Bennett, Sahan Sreenu, Vattipally B Kohl, Alain Aranday-Cortes, Elihu Tong, Lily Nichols, Jenna Thomson, Emma C Wang, Dennis Mallal, Simon de Silva, Thushan I |
description | We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6
+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA. |
doi_str_mv | 10.1101/gr.268110.120 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8015849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2501850991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-89e45e82d4ba1391afb87665581953e6f88f6c4569188ccc691c8d609a13d5cb3</originalsourceid><addsrcrecordid>eNpdkc1LxDAQxYMofh-9SsGLl2qmabqTi7AsfoEouOo1pGlaI7uJJq3gf2-W3RX1NDPMj8d7PEKOgJ4BUDjvwllRISzOgm6QXeClyHlZic20U8RcUA47ZC_GN0opKxG3yQ5jo6IQjO-SyXSoO-P83Ors8X6c2ca43rZWq956l1mXTceP03ziX_IiW4PRfAzGaeu6rFG9OiBbrZpFc7ia--T56vJpcpPfPVzfTsZ3uS4R-hyFKbnBoilrBUyAamscVRXnCIIzU7WIbaVLXglA1FqnqbGpqEh0w3XN9snFUvd9qOem0clpUDP5HuxchS_plZV_P86-ys5_SqTAsRRJ4HQlEHxKEHs5t1Gb2Uw544coC04BORUCEnryD33zQ3ApXqIA2AgReKLyJaWDjzGY9scMULmoR3ZBLuuRqZ7EH_9O8EOv-2Df89-JRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2511378815</pqid></control><display><type>article</type><title>Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Parker, Matthew D ; Lindsey, Benjamin B ; Leary, Shay ; Gaudieri, Silvana ; Chopra, Abha ; Wyles, Matthew ; Angyal, Adrienn ; Green, Luke R ; Parsons, Paul ; Tucker, Rachel M ; Brown, Rebecca ; Groves, Danielle ; Johnson, Katie ; Carrilero, Laura ; Heffer, Joe ; Partridge, David G ; Evans, Cariad ; Raza, Mohammad ; Keeley, Alexander J ; Smith, Nikki ; Filipe, Ana Da Silva ; Shepherd, James G ; Davis, Chris ; Bennett, Sahan ; Sreenu, Vattipally B ; Kohl, Alain ; Aranday-Cortes, Elihu ; Tong, Lily ; Nichols, Jenna ; Thomson, Emma C ; Wang, Dennis ; Mallal, Simon ; de Silva, Thushan I</creator><creatorcontrib>Parker, Matthew D ; Lindsey, Benjamin B ; Leary, Shay ; Gaudieri, Silvana ; Chopra, Abha ; Wyles, Matthew ; Angyal, Adrienn ; Green, Luke R ; Parsons, Paul ; Tucker, Rachel M ; Brown, Rebecca ; Groves, Danielle ; Johnson, Katie ; Carrilero, Laura ; Heffer, Joe ; Partridge, David G ; Evans, Cariad ; Raza, Mohammad ; Keeley, Alexander J ; Smith, Nikki ; Filipe, Ana Da Silva ; Shepherd, James G ; Davis, Chris ; Bennett, Sahan ; Sreenu, Vattipally B ; Kohl, Alain ; Aranday-Cortes, Elihu ; Tong, Lily ; Nichols, Jenna ; Thomson, Emma C ; Wang, Dennis ; Mallal, Simon ; de Silva, Thushan I ; COVID-19 Genomics UK (COG-UK) Consortium ; The COVID-19 Genomics UK (COG-UK) Consortium</creatorcontrib><description>We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6
+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.</description><identifier>ISSN: 1088-9051</identifier><identifier>EISSN: 1549-5469</identifier><identifier>DOI: 10.1101/gr.268110.120</identifier><identifier>PMID: 33722935</identifier><language>eng</language><publisher>United States: Cold Spring Harbor Laboratory Press</publisher><subject>5' Untranslated Regions ; ACE2 ; Angiotensin-converting enzyme 2 ; Animals ; Base Sequence ; Cell lines ; Chlorocebus aethiops ; Codons ; COVID-19 ; Genome, Viral ; Genomics ; Homology ; Humans ; Intermediates ; Limit of Detection ; Method ; Nucleotide sequence ; Open reading frames ; Regulatory sequences ; Ribonucleic acid ; RNA ; RNA, Viral - genetics ; SARS-CoV-2 - genetics ; Sequence Analysis, RNA - methods ; Severe acute respiratory syndrome coronavirus 2 ; Transcription ; Vero Cells</subject><ispartof>Genome research, 2021-04, Vol.31 (4), p.645-658</ispartof><rights>2021 Parker et al.; Published by Cold Spring Harbor Laboratory Press.</rights><rights>Copyright Cold Spring Harbor Laboratory Press Apr 2021</rights><rights>2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-89e45e82d4ba1391afb87665581953e6f88f6c4569188ccc691c8d609a13d5cb3</citedby><cites>FETCH-LOGICAL-c481t-89e45e82d4ba1391afb87665581953e6f88f6c4569188ccc691c8d609a13d5cb3</cites><orcidid>0000-0003-3915-048X ; 0000-0001-8483-1749 ; 0000-0003-2637-2307 ; 0000-0002-6966-2294 ; 0000-0001-6673-4697 ; 0000-0003-0068-1005 ; 0000-0001-5008-9080 ; 0000-0002-9442-2903 ; 0000-0002-6498-9212 ; 0000-0003-2999-3870 ; 0000-0003-1482-0889 ; 0000-0003-0093-7170 ; 0000-0002-7036-1309 ; 0000-0003-4227-2592 ; 0000-0002-2836-2041</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8015849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33722935$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Parker, Matthew D</creatorcontrib><creatorcontrib>Lindsey, Benjamin B</creatorcontrib><creatorcontrib>Leary, Shay</creatorcontrib><creatorcontrib>Gaudieri, Silvana</creatorcontrib><creatorcontrib>Chopra, Abha</creatorcontrib><creatorcontrib>Wyles, Matthew</creatorcontrib><creatorcontrib>Angyal, Adrienn</creatorcontrib><creatorcontrib>Green, Luke R</creatorcontrib><creatorcontrib>Parsons, Paul</creatorcontrib><creatorcontrib>Tucker, Rachel M</creatorcontrib><creatorcontrib>Brown, Rebecca</creatorcontrib><creatorcontrib>Groves, Danielle</creatorcontrib><creatorcontrib>Johnson, Katie</creatorcontrib><creatorcontrib>Carrilero, Laura</creatorcontrib><creatorcontrib>Heffer, Joe</creatorcontrib><creatorcontrib>Partridge, David G</creatorcontrib><creatorcontrib>Evans, Cariad</creatorcontrib><creatorcontrib>Raza, Mohammad</creatorcontrib><creatorcontrib>Keeley, Alexander J</creatorcontrib><creatorcontrib>Smith, Nikki</creatorcontrib><creatorcontrib>Filipe, Ana Da Silva</creatorcontrib><creatorcontrib>Shepherd, James G</creatorcontrib><creatorcontrib>Davis, Chris</creatorcontrib><creatorcontrib>Bennett, Sahan</creatorcontrib><creatorcontrib>Sreenu, Vattipally B</creatorcontrib><creatorcontrib>Kohl, Alain</creatorcontrib><creatorcontrib>Aranday-Cortes, Elihu</creatorcontrib><creatorcontrib>Tong, Lily</creatorcontrib><creatorcontrib>Nichols, Jenna</creatorcontrib><creatorcontrib>Thomson, Emma C</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Mallal, Simon</creatorcontrib><creatorcontrib>de Silva, Thushan I</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) Consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) Consortium</creatorcontrib><title>Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data</title><title>Genome research</title><addtitle>Genome Res</addtitle><description>We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6
+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.</description><subject>5' Untranslated Regions</subject><subject>ACE2</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cell lines</subject><subject>Chlorocebus aethiops</subject><subject>Codons</subject><subject>COVID-19</subject><subject>Genome, Viral</subject><subject>Genomics</subject><subject>Homology</subject><subject>Humans</subject><subject>Intermediates</subject><subject>Limit of Detection</subject><subject>Method</subject><subject>Nucleotide sequence</subject><subject>Open reading frames</subject><subject>Regulatory sequences</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Viral - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Transcription</subject><subject>Vero Cells</subject><issn>1088-9051</issn><issn>1549-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1LxDAQxYMofh-9SsGLl2qmabqTi7AsfoEouOo1pGlaI7uJJq3gf2-W3RX1NDPMj8d7PEKOgJ4BUDjvwllRISzOgm6QXeClyHlZic20U8RcUA47ZC_GN0opKxG3yQ5jo6IQjO-SyXSoO-P83Ors8X6c2ca43rZWq956l1mXTceP03ziX_IiW4PRfAzGaeu6rFG9OiBbrZpFc7ia--T56vJpcpPfPVzfTsZ3uS4R-hyFKbnBoilrBUyAamscVRXnCIIzU7WIbaVLXglA1FqnqbGpqEh0w3XN9snFUvd9qOem0clpUDP5HuxchS_plZV_P86-ys5_SqTAsRRJ4HQlEHxKEHs5t1Gb2Uw544coC04BORUCEnryD33zQ3ApXqIA2AgReKLyJaWDjzGY9scMULmoR3ZBLuuRqZ7EH_9O8EOv-2Df89-JRg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Parker, Matthew D</creator><creator>Lindsey, Benjamin B</creator><creator>Leary, Shay</creator><creator>Gaudieri, Silvana</creator><creator>Chopra, Abha</creator><creator>Wyles, Matthew</creator><creator>Angyal, Adrienn</creator><creator>Green, Luke R</creator><creator>Parsons, Paul</creator><creator>Tucker, Rachel M</creator><creator>Brown, Rebecca</creator><creator>Groves, Danielle</creator><creator>Johnson, Katie</creator><creator>Carrilero, Laura</creator><creator>Heffer, Joe</creator><creator>Partridge, David G</creator><creator>Evans, Cariad</creator><creator>Raza, Mohammad</creator><creator>Keeley, Alexander J</creator><creator>Smith, Nikki</creator><creator>Filipe, Ana Da Silva</creator><creator>Shepherd, James G</creator><creator>Davis, Chris</creator><creator>Bennett, Sahan</creator><creator>Sreenu, Vattipally B</creator><creator>Kohl, Alain</creator><creator>Aranday-Cortes, Elihu</creator><creator>Tong, Lily</creator><creator>Nichols, Jenna</creator><creator>Thomson, Emma C</creator><creator>Wang, Dennis</creator><creator>Mallal, Simon</creator><creator>de Silva, Thushan I</creator><general>Cold Spring Harbor Laboratory Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-8483-1749</orcidid><orcidid>https://orcid.org/0000-0003-2637-2307</orcidid><orcidid>https://orcid.org/0000-0002-6966-2294</orcidid><orcidid>https://orcid.org/0000-0001-6673-4697</orcidid><orcidid>https://orcid.org/0000-0003-0068-1005</orcidid><orcidid>https://orcid.org/0000-0001-5008-9080</orcidid><orcidid>https://orcid.org/0000-0002-9442-2903</orcidid><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0003-2999-3870</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-0093-7170</orcidid><orcidid>https://orcid.org/0000-0002-7036-1309</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid><orcidid>https://orcid.org/0000-0002-2836-2041</orcidid></search><sort><creationdate>20210401</creationdate><title>Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data</title><author>Parker, Matthew D ; Lindsey, Benjamin B ; Leary, Shay ; Gaudieri, Silvana ; Chopra, Abha ; Wyles, Matthew ; Angyal, Adrienn ; Green, Luke R ; Parsons, Paul ; Tucker, Rachel M ; Brown, Rebecca ; Groves, Danielle ; Johnson, Katie ; Carrilero, Laura ; Heffer, Joe ; Partridge, David G ; Evans, Cariad ; Raza, Mohammad ; Keeley, Alexander J ; Smith, Nikki ; Filipe, Ana Da Silva ; Shepherd, James G ; Davis, Chris ; Bennett, Sahan ; Sreenu, Vattipally B ; Kohl, Alain ; Aranday-Cortes, Elihu ; Tong, Lily ; Nichols, Jenna ; Thomson, Emma C ; Wang, Dennis ; Mallal, Simon ; de Silva, Thushan I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-89e45e82d4ba1391afb87665581953e6f88f6c4569188ccc691c8d609a13d5cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5' Untranslated Regions</topic><topic>ACE2</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cell lines</topic><topic>Chlorocebus aethiops</topic><topic>Codons</topic><topic>COVID-19</topic><topic>Genome, Viral</topic><topic>Genomics</topic><topic>Homology</topic><topic>Humans</topic><topic>Intermediates</topic><topic>Limit of Detection</topic><topic>Method</topic><topic>Nucleotide sequence</topic><topic>Open reading frames</topic><topic>Regulatory sequences</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Viral - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Transcription</topic><topic>Vero Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parker, Matthew D</creatorcontrib><creatorcontrib>Lindsey, Benjamin B</creatorcontrib><creatorcontrib>Leary, Shay</creatorcontrib><creatorcontrib>Gaudieri, Silvana</creatorcontrib><creatorcontrib>Chopra, Abha</creatorcontrib><creatorcontrib>Wyles, Matthew</creatorcontrib><creatorcontrib>Angyal, Adrienn</creatorcontrib><creatorcontrib>Green, Luke R</creatorcontrib><creatorcontrib>Parsons, Paul</creatorcontrib><creatorcontrib>Tucker, Rachel M</creatorcontrib><creatorcontrib>Brown, Rebecca</creatorcontrib><creatorcontrib>Groves, Danielle</creatorcontrib><creatorcontrib>Johnson, Katie</creatorcontrib><creatorcontrib>Carrilero, Laura</creatorcontrib><creatorcontrib>Heffer, Joe</creatorcontrib><creatorcontrib>Partridge, David G</creatorcontrib><creatorcontrib>Evans, Cariad</creatorcontrib><creatorcontrib>Raza, Mohammad</creatorcontrib><creatorcontrib>Keeley, Alexander J</creatorcontrib><creatorcontrib>Smith, Nikki</creatorcontrib><creatorcontrib>Filipe, Ana Da Silva</creatorcontrib><creatorcontrib>Shepherd, James G</creatorcontrib><creatorcontrib>Davis, Chris</creatorcontrib><creatorcontrib>Bennett, Sahan</creatorcontrib><creatorcontrib>Sreenu, Vattipally B</creatorcontrib><creatorcontrib>Kohl, Alain</creatorcontrib><creatorcontrib>Aranday-Cortes, Elihu</creatorcontrib><creatorcontrib>Tong, Lily</creatorcontrib><creatorcontrib>Nichols, Jenna</creatorcontrib><creatorcontrib>Thomson, Emma C</creatorcontrib><creatorcontrib>Wang, Dennis</creatorcontrib><creatorcontrib>Mallal, Simon</creatorcontrib><creatorcontrib>de Silva, Thushan I</creatorcontrib><creatorcontrib>COVID-19 Genomics UK (COG-UK) Consortium</creatorcontrib><creatorcontrib>The COVID-19 Genomics UK (COG-UK) Consortium</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, Matthew D</au><au>Lindsey, Benjamin B</au><au>Leary, Shay</au><au>Gaudieri, Silvana</au><au>Chopra, Abha</au><au>Wyles, Matthew</au><au>Angyal, Adrienn</au><au>Green, Luke R</au><au>Parsons, Paul</au><au>Tucker, Rachel M</au><au>Brown, Rebecca</au><au>Groves, Danielle</au><au>Johnson, Katie</au><au>Carrilero, Laura</au><au>Heffer, Joe</au><au>Partridge, David G</au><au>Evans, Cariad</au><au>Raza, Mohammad</au><au>Keeley, Alexander J</au><au>Smith, Nikki</au><au>Filipe, Ana Da Silva</au><au>Shepherd, James G</au><au>Davis, Chris</au><au>Bennett, Sahan</au><au>Sreenu, Vattipally B</au><au>Kohl, Alain</au><au>Aranday-Cortes, Elihu</au><au>Tong, Lily</au><au>Nichols, Jenna</au><au>Thomson, Emma C</au><au>Wang, Dennis</au><au>Mallal, Simon</au><au>de Silva, Thushan I</au><aucorp>COVID-19 Genomics UK (COG-UK) Consortium</aucorp><aucorp>The COVID-19 Genomics UK (COG-UK) Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data</atitle><jtitle>Genome research</jtitle><addtitle>Genome Res</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>645</spage><epage>658</epage><pages>645-658</pages><issn>1088-9051</issn><eissn>1549-5469</eissn><abstract>We have developed periscope, a tool for the detection and quantification of subgenomic RNA (sgRNA) in SARS-CoV-2 genomic sequence data. The translation of the SARS-CoV-2 RNA genome for most open reading frames (ORFs) occurs via RNA intermediates termed "subgenomic RNAs." sgRNAs are produced through discontinuous transcription, which relies on homology between transcription regulatory sequences (TRS-B) upstream of the ORF start codons and that of the TRS-L, which is located in the 5' UTR. TRS-L is immediately preceded by a leader sequence. This leader sequence is therefore found at the 5' end of all sgRNA. We applied periscope to 1155 SARS-CoV-2 genomes from Sheffield, United Kingdom, and validated our findings using orthogonal data sets and in vitro cell systems. By using a simple local alignment to detect reads that contain the leader sequence, we were able to identify and quantify reads arising from canonical and noncanonical sgRNA. We were able to detect all canonical sgRNAs at the expected abundances, with the exception of ORF10. A number of recurrent noncanonical sgRNAs are detected. We show that the results are reproducible using technical replicates and determine the optimum number of reads for sgRNA analysis. In VeroE6
+/- cell lines, periscope can detect the changes in the kinetics of sgRNA in orthogonal sequencing data sets. Finally, variants found in genomic RNA are transmitted to sgRNAs with high fidelity in most cases. This tool can be applied to all sequenced COVID-19 samples worldwide to provide comprehensive analysis of SARS-CoV-2 sgRNA.</abstract><cop>United States</cop><pub>Cold Spring Harbor Laboratory Press</pub><pmid>33722935</pmid><doi>10.1101/gr.268110.120</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3915-048X</orcidid><orcidid>https://orcid.org/0000-0001-8483-1749</orcidid><orcidid>https://orcid.org/0000-0003-2637-2307</orcidid><orcidid>https://orcid.org/0000-0002-6966-2294</orcidid><orcidid>https://orcid.org/0000-0001-6673-4697</orcidid><orcidid>https://orcid.org/0000-0003-0068-1005</orcidid><orcidid>https://orcid.org/0000-0001-5008-9080</orcidid><orcidid>https://orcid.org/0000-0002-9442-2903</orcidid><orcidid>https://orcid.org/0000-0002-6498-9212</orcidid><orcidid>https://orcid.org/0000-0003-2999-3870</orcidid><orcidid>https://orcid.org/0000-0003-1482-0889</orcidid><orcidid>https://orcid.org/0000-0003-0093-7170</orcidid><orcidid>https://orcid.org/0000-0002-7036-1309</orcidid><orcidid>https://orcid.org/0000-0003-4227-2592</orcidid><orcidid>https://orcid.org/0000-0002-2836-2041</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-9051 |
ispartof | Genome research, 2021-04, Vol.31 (4), p.645-658 |
issn | 1088-9051 1549-5469 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8015849 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | 5' Untranslated Regions ACE2 Angiotensin-converting enzyme 2 Animals Base Sequence Cell lines Chlorocebus aethiops Codons COVID-19 Genome, Viral Genomics Homology Humans Intermediates Limit of Detection Method Nucleotide sequence Open reading frames Regulatory sequences Ribonucleic acid RNA RNA, Viral - genetics SARS-CoV-2 - genetics Sequence Analysis, RNA - methods Severe acute respiratory syndrome coronavirus 2 Transcription Vero Cells |
title | Subgenomic RNA identification in SARS-CoV-2 genomic sequencing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subgenomic%20RNA%20identification%20in%20SARS-CoV-2%20genomic%20sequencing%20data&rft.jtitle=Genome%20research&rft.au=Parker,%20Matthew%20D&rft.aucorp=COVID-19%20Genomics%20UK%20(COG-UK)%20Consortium&rft.date=2021-04-01&rft.volume=31&rft.issue=4&rft.spage=645&rft.epage=658&rft.pages=645-658&rft.issn=1088-9051&rft.eissn=1549-5469&rft_id=info:doi/10.1101/gr.268110.120&rft_dat=%3Cproquest_pubme%3E2501850991%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2511378815&rft_id=info:pmid/33722935&rfr_iscdi=true |