Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2

Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2021-05, Vol.93 (5), p.3143-3151
Hauptverfasser: Hu, Shiling, Wang, Jue, Zhang, Yongjing, Bai, Haoyun, Wang, Cheng, Wang, Nan, He, Langchong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3151
container_issue 5
container_start_page 3143
container_title Journal of medical virology
container_volume 93
creator Hu, Shiling
Wang, Jue
Zhang, Yongjing
Bai, Haoyun
Wang, Cheng
Wang, Nan
He, Langchong
description Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.
doi_str_mv 10.1002/jmv.26874
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489251936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi1ERacDC14AWWIDi7T-T7JBKkOBoiIkVLq1bMfueMjYqZ1MmR2PwDPyJLidUgESG9-Fj46-ez8AnmJ0iBEiR6v15pCIpmYPwAyjVlQtqvFDMEOYiUoIzPfBQc4rhFDTEvII7FPKG8RxMwPj-TJZC7PqN16F2HsDlfFdhj4svfYjJAi3P7__CIt4AfPgv1o4ZDt1cePTlGF542C_-Qz1FmofOh8u4RihjuMS-jHDz6_fQBU6mKyxwxgTPF6ckMdgz6k-2yd3cw6-vD05X7yvzj69O10cn1WG05pVpGFUN9pxXDvhGGG8rTWmgjLntHOOEI0tV447rm1LhKGaCsUIqhvaCaPoHLzaeYdJr21nbBiT6uWQ_FqlrYzKy79_gl_Ky7iRDcKUM1oEL-4EKV5NNo9y7bOxfa-CjVOWhJWDctyWTHPw_B90FacUynqScFTOLnCJNQcvd5RJMedk3X0YjORNl7J0KW-7LOyzP9Pfk7_LK8DRDrj2vd3-3yQ_fLzYKX8BStiqEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509226178</pqid></control><display><type>article</type><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</creator><creatorcontrib>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</creatorcontrib><description>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.26874</identifier><identifier>PMID: 33580518</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>2019‐nCoV ; ACE2 ; Acids ; Alkenes - chemistry ; Alkenes - pharmacology ; Angiotensin ; Angiotensin-converting enzyme 2 ; Angiotensin-Converting Enzyme 2 - chemistry ; Angiotensin-Converting Enzyme 2 - metabolism ; Antiviral activity ; Benzofurans - chemistry ; Benzofurans - pharmacology ; Binding ; Caffeic Acids - chemistry ; Caffeic Acids - pharmacology ; Cell Survival ; Coronaviridae ; Coronaviruses ; COVID-19 ; COVID-19 - drug therapy ; Flow cytometry ; HEK293 Cells ; Herbal medicine ; Humans ; Lactates - chemistry ; Lactates - pharmacology ; Molecular docking ; Molecular Structure ; Polyphenols - chemistry ; Polyphenols - pharmacology ; Protein Binding ; Proteins ; Receptors ; salvianolic acid A ; salvianolic acid B ; salvianolic acid C ; SARS-CoV-2 - drug effects ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - metabolism ; Spike protein ; Surface plasmon resonance ; Toxicity ; Traditional Chinese medicine ; Viral diseases ; Virology ; Virus Internalization</subject><ispartof>Journal of medical virology, 2021-05, Vol.93 (5), p.3143-3151</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</citedby><cites>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</cites><orcidid>0000-0002-0880-7904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.26874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.26874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Shiling</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Zhang, Yongjing</creatorcontrib><creatorcontrib>Bai, Haoyun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>He, Langchong</creatorcontrib><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</description><subject>2019‐nCoV</subject><subject>ACE2</subject><subject>Acids</subject><subject>Alkenes - chemistry</subject><subject>Alkenes - pharmacology</subject><subject>Angiotensin</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Angiotensin-Converting Enzyme 2 - chemistry</subject><subject>Angiotensin-Converting Enzyme 2 - metabolism</subject><subject>Antiviral activity</subject><subject>Benzofurans - chemistry</subject><subject>Benzofurans - pharmacology</subject><subject>Binding</subject><subject>Caffeic Acids - chemistry</subject><subject>Caffeic Acids - pharmacology</subject><subject>Cell Survival</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - drug therapy</subject><subject>Flow cytometry</subject><subject>HEK293 Cells</subject><subject>Herbal medicine</subject><subject>Humans</subject><subject>Lactates - chemistry</subject><subject>Lactates - pharmacology</subject><subject>Molecular docking</subject><subject>Molecular Structure</subject><subject>Polyphenols - chemistry</subject><subject>Polyphenols - pharmacology</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>salvianolic acid A</subject><subject>salvianolic acid B</subject><subject>salvianolic acid C</subject><subject>SARS-CoV-2 - drug effects</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Spike protein</subject><subject>Surface plasmon resonance</subject><subject>Toxicity</subject><subject>Traditional Chinese medicine</subject><subject>Viral diseases</subject><subject>Virology</subject><subject>Virus Internalization</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi1ERacDC14AWWIDi7T-T7JBKkOBoiIkVLq1bMfueMjYqZ1MmR2PwDPyJLidUgESG9-Fj46-ez8AnmJ0iBEiR6v15pCIpmYPwAyjVlQtqvFDMEOYiUoIzPfBQc4rhFDTEvII7FPKG8RxMwPj-TJZC7PqN16F2HsDlfFdhj4svfYjJAi3P7__CIt4AfPgv1o4ZDt1cePTlGF542C_-Qz1FmofOh8u4RihjuMS-jHDz6_fQBU6mKyxwxgTPF6ckMdgz6k-2yd3cw6-vD05X7yvzj69O10cn1WG05pVpGFUN9pxXDvhGGG8rTWmgjLntHOOEI0tV447rm1LhKGaCsUIqhvaCaPoHLzaeYdJr21nbBiT6uWQ_FqlrYzKy79_gl_Ky7iRDcKUM1oEL-4EKV5NNo9y7bOxfa-CjVOWhJWDctyWTHPw_B90FacUynqScFTOLnCJNQcvd5RJMedk3X0YjORNl7J0KW-7LOyzP9Pfk7_LK8DRDrj2vd3-3yQ_fLzYKX8BStiqEQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hu, Shiling</creator><creator>Wang, Jue</creator><creator>Zhang, Yongjing</creator><creator>Bai, Haoyun</creator><creator>Wang, Cheng</creator><creator>Wang, Nan</creator><creator>He, Langchong</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0880-7904</orcidid></search><sort><creationdate>202105</creationdate><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><author>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2019‐nCoV</topic><topic>ACE2</topic><topic>Acids</topic><topic>Alkenes - chemistry</topic><topic>Alkenes - pharmacology</topic><topic>Angiotensin</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Angiotensin-Converting Enzyme 2 - chemistry</topic><topic>Angiotensin-Converting Enzyme 2 - metabolism</topic><topic>Antiviral activity</topic><topic>Benzofurans - chemistry</topic><topic>Benzofurans - pharmacology</topic><topic>Binding</topic><topic>Caffeic Acids - chemistry</topic><topic>Caffeic Acids - pharmacology</topic><topic>Cell Survival</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - drug therapy</topic><topic>Flow cytometry</topic><topic>HEK293 Cells</topic><topic>Herbal medicine</topic><topic>Humans</topic><topic>Lactates - chemistry</topic><topic>Lactates - pharmacology</topic><topic>Molecular docking</topic><topic>Molecular Structure</topic><topic>Polyphenols - chemistry</topic><topic>Polyphenols - pharmacology</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>salvianolic acid A</topic><topic>salvianolic acid B</topic><topic>salvianolic acid C</topic><topic>SARS-CoV-2 - drug effects</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Spike protein</topic><topic>Surface plasmon resonance</topic><topic>Toxicity</topic><topic>Traditional Chinese medicine</topic><topic>Viral diseases</topic><topic>Virology</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shiling</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Zhang, Yongjing</creatorcontrib><creatorcontrib>Bai, Haoyun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>He, Langchong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shiling</au><au>Wang, Jue</au><au>Zhang, Yongjing</au><au>Bai, Haoyun</au><au>Wang, Cheng</au><au>Wang, Nan</au><au>He, Langchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>93</volume><issue>5</issue><spage>3143</spage><epage>3151</epage><pages>3143-3151</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33580518</pmid><doi>10.1002/jmv.26874</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0880-7904</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6615
ispartof Journal of medical virology, 2021-05, Vol.93 (5), p.3143-3151
issn 0146-6615
1096-9071
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013543
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 2019‐nCoV
ACE2
Acids
Alkenes - chemistry
Alkenes - pharmacology
Angiotensin
Angiotensin-converting enzyme 2
Angiotensin-Converting Enzyme 2 - chemistry
Angiotensin-Converting Enzyme 2 - metabolism
Antiviral activity
Benzofurans - chemistry
Benzofurans - pharmacology
Binding
Caffeic Acids - chemistry
Caffeic Acids - pharmacology
Cell Survival
Coronaviridae
Coronaviruses
COVID-19
COVID-19 - drug therapy
Flow cytometry
HEK293 Cells
Herbal medicine
Humans
Lactates - chemistry
Lactates - pharmacology
Molecular docking
Molecular Structure
Polyphenols - chemistry
Polyphenols - pharmacology
Protein Binding
Proteins
Receptors
salvianolic acid A
salvianolic acid B
salvianolic acid C
SARS-CoV-2 - drug effects
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - chemistry
Spike Glycoprotein, Coronavirus - metabolism
Spike protein
Surface plasmon resonance
Toxicity
Traditional Chinese medicine
Viral diseases
Virology
Virus Internalization
title Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20salvianolic%20acids%20inhibit%202019%E2%80%90nCoV%20spike%20pseudovirus%20viropexis%20by%20binding%20to%20both%20its%20RBD%20and%20receptor%20ACE2&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Hu,%20Shiling&rft.date=2021-05&rft.volume=93&rft.issue=5&rft.spage=3143&rft.epage=3151&rft.pages=3143-3151&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.26874&rft_dat=%3Cproquest_pubme%3E2489251936%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509226178&rft_id=info:pmid/33580518&rfr_iscdi=true