Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2
Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral pro...
Gespeichert in:
Veröffentlicht in: | Journal of medical virology 2021-05, Vol.93 (5), p.3143-3151 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3151 |
---|---|
container_issue | 5 |
container_start_page | 3143 |
container_title | Journal of medical virology |
container_volume | 93 |
creator | Hu, Shiling Wang, Jue Zhang, Yongjing Bai, Haoyun Wang, Cheng Wang, Nan He, Langchong |
description | Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein. |
doi_str_mv | 10.1002/jmv.26874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489251936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi1ERacDC14AWWIDi7T-T7JBKkOBoiIkVLq1bMfueMjYqZ1MmR2PwDPyJLidUgESG9-Fj46-ez8AnmJ0iBEiR6v15pCIpmYPwAyjVlQtqvFDMEOYiUoIzPfBQc4rhFDTEvII7FPKG8RxMwPj-TJZC7PqN16F2HsDlfFdhj4svfYjJAi3P7__CIt4AfPgv1o4ZDt1cePTlGF542C_-Qz1FmofOh8u4RihjuMS-jHDz6_fQBU6mKyxwxgTPF6ckMdgz6k-2yd3cw6-vD05X7yvzj69O10cn1WG05pVpGFUN9pxXDvhGGG8rTWmgjLntHOOEI0tV447rm1LhKGaCsUIqhvaCaPoHLzaeYdJr21nbBiT6uWQ_FqlrYzKy79_gl_Ky7iRDcKUM1oEL-4EKV5NNo9y7bOxfa-CjVOWhJWDctyWTHPw_B90FacUynqScFTOLnCJNQcvd5RJMedk3X0YjORNl7J0KW-7LOyzP9Pfk7_LK8DRDrj2vd3-3yQ_fLzYKX8BStiqEQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509226178</pqid></control><display><type>article</type><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</creator><creatorcontrib>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</creatorcontrib><description>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.26874</identifier><identifier>PMID: 33580518</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>2019‐nCoV ; ACE2 ; Acids ; Alkenes - chemistry ; Alkenes - pharmacology ; Angiotensin ; Angiotensin-converting enzyme 2 ; Angiotensin-Converting Enzyme 2 - chemistry ; Angiotensin-Converting Enzyme 2 - metabolism ; Antiviral activity ; Benzofurans - chemistry ; Benzofurans - pharmacology ; Binding ; Caffeic Acids - chemistry ; Caffeic Acids - pharmacology ; Cell Survival ; Coronaviridae ; Coronaviruses ; COVID-19 ; COVID-19 - drug therapy ; Flow cytometry ; HEK293 Cells ; Herbal medicine ; Humans ; Lactates - chemistry ; Lactates - pharmacology ; Molecular docking ; Molecular Structure ; Polyphenols - chemistry ; Polyphenols - pharmacology ; Protein Binding ; Proteins ; Receptors ; salvianolic acid A ; salvianolic acid B ; salvianolic acid C ; SARS-CoV-2 - drug effects ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Spike Glycoprotein, Coronavirus - chemistry ; Spike Glycoprotein, Coronavirus - metabolism ; Spike protein ; Surface plasmon resonance ; Toxicity ; Traditional Chinese medicine ; Viral diseases ; Virology ; Virus Internalization</subject><ispartof>Journal of medical virology, 2021-05, Vol.93 (5), p.3143-3151</ispartof><rights>2021 Wiley Periodicals LLC</rights><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</citedby><cites>FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</cites><orcidid>0000-0002-0880-7904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.26874$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.26874$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33580518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Shiling</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Zhang, Yongjing</creatorcontrib><creatorcontrib>Bai, Haoyun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>He, Langchong</creatorcontrib><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</description><subject>2019‐nCoV</subject><subject>ACE2</subject><subject>Acids</subject><subject>Alkenes - chemistry</subject><subject>Alkenes - pharmacology</subject><subject>Angiotensin</subject><subject>Angiotensin-converting enzyme 2</subject><subject>Angiotensin-Converting Enzyme 2 - chemistry</subject><subject>Angiotensin-Converting Enzyme 2 - metabolism</subject><subject>Antiviral activity</subject><subject>Benzofurans - chemistry</subject><subject>Benzofurans - pharmacology</subject><subject>Binding</subject><subject>Caffeic Acids - chemistry</subject><subject>Caffeic Acids - pharmacology</subject><subject>Cell Survival</subject><subject>Coronaviridae</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - drug therapy</subject><subject>Flow cytometry</subject><subject>HEK293 Cells</subject><subject>Herbal medicine</subject><subject>Humans</subject><subject>Lactates - chemistry</subject><subject>Lactates - pharmacology</subject><subject>Molecular docking</subject><subject>Molecular Structure</subject><subject>Polyphenols - chemistry</subject><subject>Polyphenols - pharmacology</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptors</subject><subject>salvianolic acid A</subject><subject>salvianolic acid B</subject><subject>salvianolic acid C</subject><subject>SARS-CoV-2 - drug effects</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Spike Glycoprotein, Coronavirus - chemistry</subject><subject>Spike Glycoprotein, Coronavirus - metabolism</subject><subject>Spike protein</subject><subject>Surface plasmon resonance</subject><subject>Toxicity</subject><subject>Traditional Chinese medicine</subject><subject>Viral diseases</subject><subject>Virology</subject><subject>Virus Internalization</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi1ERacDC14AWWIDi7T-T7JBKkOBoiIkVLq1bMfueMjYqZ1MmR2PwDPyJLidUgESG9-Fj46-ez8AnmJ0iBEiR6v15pCIpmYPwAyjVlQtqvFDMEOYiUoIzPfBQc4rhFDTEvII7FPKG8RxMwPj-TJZC7PqN16F2HsDlfFdhj4svfYjJAi3P7__CIt4AfPgv1o4ZDt1cePTlGF542C_-Qz1FmofOh8u4RihjuMS-jHDz6_fQBU6mKyxwxgTPF6ckMdgz6k-2yd3cw6-vD05X7yvzj69O10cn1WG05pVpGFUN9pxXDvhGGG8rTWmgjLntHOOEI0tV447rm1LhKGaCsUIqhvaCaPoHLzaeYdJr21nbBiT6uWQ_FqlrYzKy79_gl_Ky7iRDcKUM1oEL-4EKV5NNo9y7bOxfa-CjVOWhJWDctyWTHPw_B90FacUynqScFTOLnCJNQcvd5RJMedk3X0YjORNl7J0KW-7LOyzP9Pfk7_LK8DRDrj2vd3-3yQ_fLzYKX8BStiqEQ</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hu, Shiling</creator><creator>Wang, Jue</creator><creator>Zhang, Yongjing</creator><creator>Bai, Haoyun</creator><creator>Wang, Cheng</creator><creator>Wang, Nan</creator><creator>He, Langchong</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0880-7904</orcidid></search><sort><creationdate>202105</creationdate><title>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</title><author>Hu, Shiling ; Wang, Jue ; Zhang, Yongjing ; Bai, Haoyun ; Wang, Cheng ; Wang, Nan ; He, Langchong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5374-2843b8bf517f6f424597b13634ffbfff22b1e5af5f5be926c3b36a420783d6ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>2019‐nCoV</topic><topic>ACE2</topic><topic>Acids</topic><topic>Alkenes - chemistry</topic><topic>Alkenes - pharmacology</topic><topic>Angiotensin</topic><topic>Angiotensin-converting enzyme 2</topic><topic>Angiotensin-Converting Enzyme 2 - chemistry</topic><topic>Angiotensin-Converting Enzyme 2 - metabolism</topic><topic>Antiviral activity</topic><topic>Benzofurans - chemistry</topic><topic>Benzofurans - pharmacology</topic><topic>Binding</topic><topic>Caffeic Acids - chemistry</topic><topic>Caffeic Acids - pharmacology</topic><topic>Cell Survival</topic><topic>Coronaviridae</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - drug therapy</topic><topic>Flow cytometry</topic><topic>HEK293 Cells</topic><topic>Herbal medicine</topic><topic>Humans</topic><topic>Lactates - chemistry</topic><topic>Lactates - pharmacology</topic><topic>Molecular docking</topic><topic>Molecular Structure</topic><topic>Polyphenols - chemistry</topic><topic>Polyphenols - pharmacology</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptors</topic><topic>salvianolic acid A</topic><topic>salvianolic acid B</topic><topic>salvianolic acid C</topic><topic>SARS-CoV-2 - drug effects</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Spike Glycoprotein, Coronavirus - chemistry</topic><topic>Spike Glycoprotein, Coronavirus - metabolism</topic><topic>Spike protein</topic><topic>Surface plasmon resonance</topic><topic>Toxicity</topic><topic>Traditional Chinese medicine</topic><topic>Viral diseases</topic><topic>Virology</topic><topic>Virus Internalization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shiling</creatorcontrib><creatorcontrib>Wang, Jue</creatorcontrib><creatorcontrib>Zhang, Yongjing</creatorcontrib><creatorcontrib>Bai, Haoyun</creatorcontrib><creatorcontrib>Wang, Cheng</creatorcontrib><creatorcontrib>Wang, Nan</creatorcontrib><creatorcontrib>He, Langchong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shiling</au><au>Wang, Jue</au><au>Zhang, Yongjing</au><au>Bai, Haoyun</au><au>Wang, Cheng</au><au>Wang, Nan</au><au>He, Langchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>93</volume><issue>5</issue><spage>3143</spage><epage>3151</epage><pages>3143-3151</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>Since December 2019, the new coronavirus (also known as severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2, 2019‐nCoV])—induced disease, COVID‐19, has spread rapidly worldwide. Studies have reported that the traditional Chinese medicine Salvia miltiorrhiza possesses remarkable antiviral properties; however, the anti‐coronaviral activity of its main components, salvianolic acid A (SAA), salvianolic acid B (SAB), and salvianolic acid C (SAC) is still debated. In this study, we used Cell Counting Kit‐8 staining and flow cytometry to evaluate the toxicity of SAA, SAB, and SAC on ACE2 (angiotensin‐converting enzyme 2) high‐expressing HEK293T cells (ACE2h cells). We found that SAA, SAB, and SAC had a minor effect on the viability of ACE2h cells at concentrations below 100 μM. We further evaluated the binding capacity of SAA, SAB, and SAC to ACE2 and the spike protein of 2019‐nCoV using molecular docking and surface plasmon resonance. They could bind to the receptor‐binding domain (RBD) of the 2019‐nCoV with a binding constant (KD) of (3.82 ± 0.43) e−6 M, (5.15 ± 0.64)e−7 M, and (2.19 ± 0.14)e‐6 M; and bind to ACE2 with KD (4.08 ± 0.61)e−7 M, (2.95 ± 0.78)e−7 M, and (7.32 ± 0.42)e−7 M, respectively. As a result, SAA, SAB, and SAC were determined to inhibit the entry of 2019‐nCoV Spike pseudovirus with an EC50 of 11.31, 6.22, and 10.14 μM on ACE2h cells, respectively. In conclusion, our study revealed that three Salvianolic acids can inhibit the entry of 2019‐nCoV spike pseudovirus into ACE2h cells by binding to the RBD of the 2019‐nCoV spike protein and ACE2 protein.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>33580518</pmid><doi>10.1002/jmv.26874</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0880-7904</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-6615 |
ispartof | Journal of medical virology, 2021-05, Vol.93 (5), p.3143-3151 |
issn | 0146-6615 1096-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8013543 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 2019‐nCoV ACE2 Acids Alkenes - chemistry Alkenes - pharmacology Angiotensin Angiotensin-converting enzyme 2 Angiotensin-Converting Enzyme 2 - chemistry Angiotensin-Converting Enzyme 2 - metabolism Antiviral activity Benzofurans - chemistry Benzofurans - pharmacology Binding Caffeic Acids - chemistry Caffeic Acids - pharmacology Cell Survival Coronaviridae Coronaviruses COVID-19 COVID-19 - drug therapy Flow cytometry HEK293 Cells Herbal medicine Humans Lactates - chemistry Lactates - pharmacology Molecular docking Molecular Structure Polyphenols - chemistry Polyphenols - pharmacology Protein Binding Proteins Receptors salvianolic acid A salvianolic acid B salvianolic acid C SARS-CoV-2 - drug effects Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - chemistry Spike Glycoprotein, Coronavirus - metabolism Spike protein Surface plasmon resonance Toxicity Traditional Chinese medicine Viral diseases Virology Virus Internalization |
title | Three salvianolic acids inhibit 2019‐nCoV spike pseudovirus viropexis by binding to both its RBD and receptor ACE2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A31%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%20salvianolic%20acids%20inhibit%202019%E2%80%90nCoV%20spike%20pseudovirus%20viropexis%20by%20binding%20to%20both%20its%20RBD%20and%20receptor%20ACE2&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Hu,%20Shiling&rft.date=2021-05&rft.volume=93&rft.issue=5&rft.spage=3143&rft.epage=3151&rft.pages=3143-3151&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.26874&rft_dat=%3Cproquest_pubme%3E2489251936%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509226178&rft_id=info:pmid/33580518&rfr_iscdi=true |