Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation
Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2020-12, Vol.120 (23), p.12788-12833 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12833 |
---|---|
container_issue | 23 |
container_start_page | 12788 |
container_title | Chemical reviews |
container_volume | 120 |
creator | Decherchi, Sergio Cavalli, Andrea |
description | Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches. |
doi_str_mv | 10.1021/acs.chemrev.0c00534 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470670295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERbeFX4CEInHhku3YjpP4ggSlfPRDHFjOlu1Mdl0ldmsnlfbf49UuK-DAZUajed7XHr2EvKawpMDohbZpaTc4RnxaggUQvHpGFlQwKOtWwnOyAABZsroWp-Qspfs8CsGaF-SUc4DM8AW5Xm0wjqHbej06mwrtu-LGeZx2Q-iLT3Felysd1zgVH53vnF8XZlvchQHtPOhY_HBj7pML_iU56fWQ8NWhn5Ofn69Wl1_L2-9fvl1-uC214HIq-0ZiA5z2oumNqLvWYNsI3eVaUVPLyqKp0HIGVvSmMyB5W5la85ox5JTyc_J-7_swmxE7i36KelAP0Y06blXQTv298W6j1uFJtUCppCwbvDsYxPA4Y5rU6JLFYdAew5wUq6q2AtFSmdG3_6D3YY4-n5epBuoGmBSZ4nvKxpBSxP74GQpql5XKWalDVuqQVVa9-fOOo-Z3OBm42AM79fHd_1n-AjvGo1s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470670295</pqid></control><display><type>article</type><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><source>American Chemical Society Journals</source><creator>Decherchi, Sergio ; Cavalli, Andrea</creator><creatorcontrib>Decherchi, Sergio ; Cavalli, Andrea</creatorcontrib><description>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c00534</identifier><identifier>PMID: 33006893</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Binding ; Biophysics ; Complexity ; Estimation ; Free energy ; Machine learning ; Molecular dynamics ; Pharmacology ; Review ; Simulation ; Statistical mechanics</subject><ispartof>Chemical reviews, 2020-12, Vol.120 (23), p.12788-12833</ispartof><rights>Copyright American Chemical Society Dec 9, 2020</rights><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</citedby><cites>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</cites><orcidid>0000-0002-6370-1176 ; 0000-0001-8371-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c00534$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33006893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</description><subject>Algorithms</subject><subject>Binding</subject><subject>Biophysics</subject><subject>Complexity</subject><subject>Estimation</subject><subject>Free energy</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Pharmacology</subject><subject>Review</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1ERbeFX4CEInHhku3YjpP4ggSlfPRDHFjOlu1Mdl0ldmsnlfbf49UuK-DAZUajed7XHr2EvKawpMDohbZpaTc4RnxaggUQvHpGFlQwKOtWwnOyAABZsroWp-Qspfs8CsGaF-SUc4DM8AW5Xm0wjqHbej06mwrtu-LGeZx2Q-iLT3Felysd1zgVH53vnF8XZlvchQHtPOhY_HBj7pML_iU56fWQ8NWhn5Ofn69Wl1_L2-9fvl1-uC214HIq-0ZiA5z2oumNqLvWYNsI3eVaUVPLyqKp0HIGVvSmMyB5W5la85ox5JTyc_J-7_swmxE7i36KelAP0Y06blXQTv298W6j1uFJtUCppCwbvDsYxPA4Y5rU6JLFYdAew5wUq6q2AtFSmdG3_6D3YY4-n5epBuoGmBSZ4nvKxpBSxP74GQpql5XKWalDVuqQVVa9-fOOo-Z3OBm42AM79fHd_1n-AjvGo1s</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Decherchi, Sergio</creator><creator>Cavalli, Andrea</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6370-1176</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid></search><sort><creationdate>20201209</creationdate><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><author>Decherchi, Sergio ; Cavalli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Binding</topic><topic>Biophysics</topic><topic>Complexity</topic><topic>Estimation</topic><topic>Free energy</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Pharmacology</topic><topic>Review</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decherchi, Sergio</au><au>Cavalli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>120</volume><issue>23</issue><spage>12788</spage><epage>12833</epage><pages>12788-12833</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33006893</pmid><doi>10.1021/acs.chemrev.0c00534</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-6370-1176</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2020-12, Vol.120 (23), p.12788-12833 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011912 |
source | American Chemical Society Journals |
subjects | Algorithms Binding Biophysics Complexity Estimation Free energy Machine learning Molecular dynamics Pharmacology Review Simulation Statistical mechanics |
title | Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20and%20Kinetics%20of%20Drug-Target%20Binding%20by%20Molecular%20Simulation&rft.jtitle=Chemical%20reviews&rft.au=Decherchi,%20Sergio&rft.date=2020-12-09&rft.volume=120&rft.issue=23&rft.spage=12788&rft.epage=12833&rft.pages=12788-12833&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c00534&rft_dat=%3Cproquest_pubme%3E2470670295%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470670295&rft_id=info:pmid/33006893&rfr_iscdi=true |