Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation

Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2020-12, Vol.120 (23), p.12788-12833
Hauptverfasser: Decherchi, Sergio, Cavalli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12833
container_issue 23
container_start_page 12788
container_title Chemical reviews
container_volume 120
creator Decherchi, Sergio
Cavalli, Andrea
description Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.
doi_str_mv 10.1021/acs.chemrev.0c00534
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470670295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi1ERbeFX4CEInHhku3YjpP4ggSlfPRDHFjOlu1Mdl0ldmsnlfbf49UuK-DAZUajed7XHr2EvKawpMDohbZpaTc4RnxaggUQvHpGFlQwKOtWwnOyAABZsroWp-Qspfs8CsGaF-SUc4DM8AW5Xm0wjqHbej06mwrtu-LGeZx2Q-iLT3Felysd1zgVH53vnF8XZlvchQHtPOhY_HBj7pML_iU56fWQ8NWhn5Ofn69Wl1_L2-9fvl1-uC214HIq-0ZiA5z2oumNqLvWYNsI3eVaUVPLyqKp0HIGVvSmMyB5W5la85ox5JTyc_J-7_swmxE7i36KelAP0Y06blXQTv298W6j1uFJtUCppCwbvDsYxPA4Y5rU6JLFYdAew5wUq6q2AtFSmdG3_6D3YY4-n5epBuoGmBSZ4nvKxpBSxP74GQpql5XKWalDVuqQVVa9-fOOo-Z3OBm42AM79fHd_1n-AjvGo1s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470670295</pqid></control><display><type>article</type><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><source>American Chemical Society Journals</source><creator>Decherchi, Sergio ; Cavalli, Andrea</creator><creatorcontrib>Decherchi, Sergio ; Cavalli, Andrea</creatorcontrib><description>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.0c00534</identifier><identifier>PMID: 33006893</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Binding ; Biophysics ; Complexity ; Estimation ; Free energy ; Machine learning ; Molecular dynamics ; Pharmacology ; Review ; Simulation ; Statistical mechanics</subject><ispartof>Chemical reviews, 2020-12, Vol.120 (23), p.12788-12833</ispartof><rights>Copyright American Chemical Society Dec 9, 2020</rights><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</citedby><cites>FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</cites><orcidid>0000-0002-6370-1176 ; 0000-0001-8371-2270</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.0c00534$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.0c00534$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33006893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</description><subject>Algorithms</subject><subject>Binding</subject><subject>Biophysics</subject><subject>Complexity</subject><subject>Estimation</subject><subject>Free energy</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Pharmacology</subject><subject>Review</subject><subject>Simulation</subject><subject>Statistical mechanics</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi1ERbeFX4CEInHhku3YjpP4ggSlfPRDHFjOlu1Mdl0ldmsnlfbf49UuK-DAZUajed7XHr2EvKawpMDohbZpaTc4RnxaggUQvHpGFlQwKOtWwnOyAABZsroWp-Qspfs8CsGaF-SUc4DM8AW5Xm0wjqHbej06mwrtu-LGeZx2Q-iLT3Felysd1zgVH53vnF8XZlvchQHtPOhY_HBj7pML_iU56fWQ8NWhn5Ofn69Wl1_L2-9fvl1-uC214HIq-0ZiA5z2oumNqLvWYNsI3eVaUVPLyqKp0HIGVvSmMyB5W5la85ox5JTyc_J-7_swmxE7i36KelAP0Y06blXQTv298W6j1uFJtUCppCwbvDsYxPA4Y5rU6JLFYdAew5wUq6q2AtFSmdG3_6D3YY4-n5epBuoGmBSZ4nvKxpBSxP74GQpql5XKWalDVuqQVVa9-fOOo-Z3OBm42AM79fHd_1n-AjvGo1s</recordid><startdate>20201209</startdate><enddate>20201209</enddate><creator>Decherchi, Sergio</creator><creator>Cavalli, Andrea</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6370-1176</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid></search><sort><creationdate>20201209</creationdate><title>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</title><author>Decherchi, Sergio ; Cavalli, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a539t-f79e7031f57fb56d8be875ade8741b694ceb4ec320c5fbdb09384b6a3622e3113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Binding</topic><topic>Biophysics</topic><topic>Complexity</topic><topic>Estimation</topic><topic>Free energy</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Pharmacology</topic><topic>Review</topic><topic>Simulation</topic><topic>Statistical mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decherchi, Sergio</creatorcontrib><creatorcontrib>Cavalli, Andrea</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decherchi, Sergio</au><au>Cavalli, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2020-12-09</date><risdate>2020</risdate><volume>120</volume><issue>23</issue><spage>12788</spage><epage>12833</epage><pages>12788-12833</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Computational studies play an increasingly important role in chemistry and biophysics, mainly thanks to improvements in hardware and algorithms. In drug discovery and development, computational studies can reduce the costs and risks of bringing a new medicine to market. Computational simulations are mainly used to optimize promising new compounds by estimating their binding affinity to proteins. This is challenging due to the complexity of the simulated system. To assess the present and future value of simulation for drug discovery, we review key applications of advanced methods for sampling complex free-energy landscapes at near nonergodicity conditions and for estimating the rate coefficients of very slow processes of pharmacological interest. We outline the statistical mechanics and computational background behind this research, including methods such as steered molecular dynamics and metadynamics. We review recent applications to pharmacology and drug discovery and discuss possible guidelines for the practitioner. Recent trends in machine learning are also briefly discussed. Thanks to the rapid development of methods for characterizing and quantifying rare events, simulation’s role in drug discovery is likely to expand, making it a valuable complement to experimental and clinical approaches.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33006893</pmid><doi>10.1021/acs.chemrev.0c00534</doi><tpages>46</tpages><orcidid>https://orcid.org/0000-0002-6370-1176</orcidid><orcidid>https://orcid.org/0000-0001-8371-2270</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2020-12, Vol.120 (23), p.12788-12833
issn 0009-2665
1520-6890
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011912
source American Chemical Society Journals
subjects Algorithms
Binding
Biophysics
Complexity
Estimation
Free energy
Machine learning
Molecular dynamics
Pharmacology
Review
Simulation
Statistical mechanics
title Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamics%20and%20Kinetics%20of%20Drug-Target%20Binding%20by%20Molecular%20Simulation&rft.jtitle=Chemical%20reviews&rft.au=Decherchi,%20Sergio&rft.date=2020-12-09&rft.volume=120&rft.issue=23&rft.spage=12788&rft.epage=12833&rft.pages=12788-12833&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.0c00534&rft_dat=%3Cproquest_pubme%3E2470670295%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470670295&rft_id=info:pmid/33006893&rfr_iscdi=true