Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy

Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-02, Vol.93 (7), p.3594-3601
Hauptverfasser: Nantogma, Shiraz, Joalland, Baptiste, Wilkens, Ken, Chekmenev, Eduard Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3601
container_issue 7
container_start_page 3594
container_title Analytical chemistry (Washington)
container_volume 93
creator Nantogma, Shiraz
Joalland, Baptiste
Wilkens, Ken
Chekmenev, Eduard Y
description Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.
doi_str_mv 10.1021/acs.analchem.0c05129
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487150221</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EotPCGyBkCSGVRYZrO3HsTSUY8SeVMlBYWzeO00mVsYOTVMrb42GmI2DBxl74fJ-vfQh5xmDJgLPXaIcleuzsxm2XYKFgXD8gC1ZwyKRS_CFZAIDIeAlwQk6H4RaAMWDyMTkRohAapFoQv-pa31rssuu0OLqOoZ7s2AZPQ0OvHMZupuspOnp-odWyePmKrjHiZq5juHGeoq_p1wn92Dap5Xeumulb5-1mDD29-vyNXvfOjjEMNvTzE_KowW5wTw_7Gfnx_t331cfs8suHT6s3lxnmZTlmjjPdCIUVYF07ZHkNQivZVNLKpnFcFCXTqlQuz_OyKVEqYVmhUepKal7n4oxc7Hv7qdq62jo_RuxMH9stxtkEbM3fJ77dmJtwZ1T6I8GLVHB-KIjh5-SG0WzbwbquQ-_CNBieq5IVwDlL6It_0NswxWRmR2mVMy3L3UT5nrLpK4bomuMwDMxOqElCzb1QcxCaYs__fMgxdG8wAbAHdvHjxf_t_AU4yq-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498419674</pqid></control><display><type>article</type><title>Clinical-Scale Production of Nearly Pure (&gt;98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</creator><creatorcontrib>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</creatorcontrib><description>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to &gt;98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c05129</identifier><identifier>PMID: 33539068</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomedical materials ; Catalysis ; Catalysts ; Chemistry ; Copper ; Enrichment ; Gas pressure ; Hydrogen ; Hyperpolarization ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Robustness ; Signal detection ; Spectroscopy ; Spectrum analysis ; Thermal coupling</subject><ispartof>Analytical chemistry (Washington), 2021-02, Vol.93 (7), p.3594-3601</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 23, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</citedby><cites>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</cites><orcidid>0000-0003-4116-6122 ; 0000-0002-8745-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c05129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c05129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33539068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Joalland, Baptiste</creatorcontrib><creatorcontrib>Wilkens, Ken</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y</creatorcontrib><title>Clinical-Scale Production of Nearly Pure (&gt;98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to &gt;98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</description><subject>Biomedical materials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Enrichment</subject><subject>Gas pressure</subject><subject>Hydrogen</subject><subject>Hyperpolarization</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Robustness</subject><subject>Signal detection</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermal coupling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EotPCGyBkCSGVRYZrO3HsTSUY8SeVMlBYWzeO00mVsYOTVMrb42GmI2DBxl74fJ-vfQh5xmDJgLPXaIcleuzsxm2XYKFgXD8gC1ZwyKRS_CFZAIDIeAlwQk6H4RaAMWDyMTkRohAapFoQv-pa31rssuu0OLqOoZ7s2AZPQ0OvHMZupuspOnp-odWyePmKrjHiZq5juHGeoq_p1wn92Dap5Xeumulb5-1mDD29-vyNXvfOjjEMNvTzE_KowW5wTw_7Gfnx_t331cfs8suHT6s3lxnmZTlmjjPdCIUVYF07ZHkNQivZVNLKpnFcFCXTqlQuz_OyKVEqYVmhUepKal7n4oxc7Hv7qdq62jo_RuxMH9stxtkEbM3fJ77dmJtwZ1T6I8GLVHB-KIjh5-SG0WzbwbquQ-_CNBieq5IVwDlL6It_0NswxWRmR2mVMy3L3UT5nrLpK4bomuMwDMxOqElCzb1QcxCaYs__fMgxdG8wAbAHdvHjxf_t_AU4yq-0</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Nantogma, Shiraz</creator><creator>Joalland, Baptiste</creator><creator>Wilkens, Ken</creator><creator>Chekmenev, Eduard Y</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4116-6122</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid></search><sort><creationdate>20210223</creationdate><title>Clinical-Scale Production of Nearly Pure (&gt;98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><author>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Enrichment</topic><topic>Gas pressure</topic><topic>Hydrogen</topic><topic>Hyperpolarization</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Robustness</topic><topic>Signal detection</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermal coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Joalland, Baptiste</creatorcontrib><creatorcontrib>Wilkens, Ken</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nantogma, Shiraz</au><au>Joalland, Baptiste</au><au>Wilkens, Ken</au><au>Chekmenev, Eduard Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical-Scale Production of Nearly Pure (&gt;98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>93</volume><issue>7</issue><spage>3594</spage><epage>3601</epage><pages>3594-3601</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to &gt;98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33539068</pmid><doi>10.1021/acs.analchem.0c05129</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4116-6122</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-02, Vol.93 (7), p.3594-3601
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011325
source MEDLINE; American Chemical Society Journals
subjects Biomedical materials
Catalysis
Catalysts
Chemistry
Copper
Enrichment
Gas pressure
Hydrogen
Hyperpolarization
Magnetic Resonance Imaging
Magnetic Resonance Spectroscopy
NMR
NMR spectroscopy
Nuclear magnetic resonance
Robustness
Signal detection
Spectroscopy
Spectrum analysis
Thermal coupling
title Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical-Scale%20Production%20of%20Nearly%20Pure%20(%3E98.5%25)%20Parahydrogen%20and%20Quantification%20by%20Benchtop%20NMR%20Spectroscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nantogma,%20Shiraz&rft.date=2021-02-23&rft.volume=93&rft.issue=7&rft.spage=3594&rft.epage=3601&rft.pages=3594-3601&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c05129&rft_dat=%3Cproquest_pubme%3E2487150221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498419674&rft_id=info:pmid/33539068&rfr_iscdi=true