Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy
Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous genera...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-02, Vol.93 (7), p.3594-3601 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3601 |
---|---|
container_issue | 7 |
container_start_page | 3594 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Nantogma, Shiraz Joalland, Baptiste Wilkens, Ken Chekmenev, Eduard Y |
description | Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research. |
doi_str_mv | 10.1021/acs.analchem.0c05129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2487150221</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EotPCGyBkCSGVRYZrO3HsTSUY8SeVMlBYWzeO00mVsYOTVMrb42GmI2DBxl74fJ-vfQh5xmDJgLPXaIcleuzsxm2XYKFgXD8gC1ZwyKRS_CFZAIDIeAlwQk6H4RaAMWDyMTkRohAapFoQv-pa31rssuu0OLqOoZ7s2AZPQ0OvHMZupuspOnp-odWyePmKrjHiZq5juHGeoq_p1wn92Dap5Xeumulb5-1mDD29-vyNXvfOjjEMNvTzE_KowW5wTw_7Gfnx_t331cfs8suHT6s3lxnmZTlmjjPdCIUVYF07ZHkNQivZVNLKpnFcFCXTqlQuz_OyKVEqYVmhUepKal7n4oxc7Hv7qdq62jo_RuxMH9stxtkEbM3fJ77dmJtwZ1T6I8GLVHB-KIjh5-SG0WzbwbquQ-_CNBieq5IVwDlL6It_0NswxWRmR2mVMy3L3UT5nrLpK4bomuMwDMxOqElCzb1QcxCaYs__fMgxdG8wAbAHdvHjxf_t_AU4yq-0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2498419674</pqid></control><display><type>article</type><title>Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</creator><creatorcontrib>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</creatorcontrib><description>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c05129</identifier><identifier>PMID: 33539068</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomedical materials ; Catalysis ; Catalysts ; Chemistry ; Copper ; Enrichment ; Gas pressure ; Hydrogen ; Hyperpolarization ; Magnetic Resonance Imaging ; Magnetic Resonance Spectroscopy ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Robustness ; Signal detection ; Spectroscopy ; Spectrum analysis ; Thermal coupling</subject><ispartof>Analytical chemistry (Washington), 2021-02, Vol.93 (7), p.3594-3601</ispartof><rights>2021 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 23, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</citedby><cites>FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</cites><orcidid>0000-0003-4116-6122 ; 0000-0002-8745-8801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c05129$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c05129$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33539068$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Joalland, Baptiste</creatorcontrib><creatorcontrib>Wilkens, Ken</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y</creatorcontrib><title>Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</description><subject>Biomedical materials</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>Copper</subject><subject>Enrichment</subject><subject>Gas pressure</subject><subject>Hydrogen</subject><subject>Hyperpolarization</subject><subject>Magnetic Resonance Imaging</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Robustness</subject><subject>Signal detection</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Thermal coupling</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EotPCGyBkCSGVRYZrO3HsTSUY8SeVMlBYWzeO00mVsYOTVMrb42GmI2DBxl74fJ-vfQh5xmDJgLPXaIcleuzsxm2XYKFgXD8gC1ZwyKRS_CFZAIDIeAlwQk6H4RaAMWDyMTkRohAapFoQv-pa31rssuu0OLqOoZ7s2AZPQ0OvHMZupuspOnp-odWyePmKrjHiZq5juHGeoq_p1wn92Dap5Xeumulb5-1mDD29-vyNXvfOjjEMNvTzE_KowW5wTw_7Gfnx_t331cfs8suHT6s3lxnmZTlmjjPdCIUVYF07ZHkNQivZVNLKpnFcFCXTqlQuz_OyKVEqYVmhUepKal7n4oxc7Hv7qdq62jo_RuxMH9stxtkEbM3fJ77dmJtwZ1T6I8GLVHB-KIjh5-SG0WzbwbquQ-_CNBieq5IVwDlL6It_0NswxWRmR2mVMy3L3UT5nrLpK4bomuMwDMxOqElCzb1QcxCaYs__fMgxdG8wAbAHdvHjxf_t_AU4yq-0</recordid><startdate>20210223</startdate><enddate>20210223</enddate><creator>Nantogma, Shiraz</creator><creator>Joalland, Baptiste</creator><creator>Wilkens, Ken</creator><creator>Chekmenev, Eduard Y</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4116-6122</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid></search><sort><creationdate>20210223</creationdate><title>Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</title><author>Nantogma, Shiraz ; Joalland, Baptiste ; Wilkens, Ken ; Chekmenev, Eduard Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-e219f38ab0addea14d03986fb6c6ffe235719878e4447f7a683c159a69b692d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biomedical materials</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>Copper</topic><topic>Enrichment</topic><topic>Gas pressure</topic><topic>Hydrogen</topic><topic>Hyperpolarization</topic><topic>Magnetic Resonance Imaging</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Robustness</topic><topic>Signal detection</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Thermal coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nantogma, Shiraz</creatorcontrib><creatorcontrib>Joalland, Baptiste</creatorcontrib><creatorcontrib>Wilkens, Ken</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nantogma, Shiraz</au><au>Joalland, Baptiste</au><au>Wilkens, Ken</au><au>Chekmenev, Eduard Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-02-23</date><risdate>2021</risdate><volume>93</volume><issue>7</issue><spage>3594</spage><epage>3601</epage><pages>3594-3601</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Because of the extensive chemical, physical, and biomedical applications of parahydrogen, the need exists for the development of highly enriched parahydrogen in a robust and efficient manner. Herein, we present a parahydrogen enrichment equipment which substantially improves upon the previous generators with its ability to enrich parahydrogen to >98.5% and a production rate of up to 4 standard liters per minute with the added advantage of real-time quantification. Our generator employs a pulsed injection system with a 3/16 in. outside diameter copper spiral tubing filled with iron-oxide catalyst. This tubing is mated to a custom-made copper attachment to provide efficient thermal coupling to the cold head. This device allows for robust operation at high pressures up to 34 atm. Real-time quantification by benchtop NMR spectroscopy is made possible by direct coupling of the p-H2 outlet from the generator to a 1.4 T NMR spectrometer using a regular 5 mm NMR tube that is continuously refilled with the exiting parahydrogen gas at ∼8 atm pressure. The use of high hydrogen gas pressure offers two critical NMR signal detection benefits: increased concentration and line narrowing. Our work presents a comprehensive description of the apparatus for a convenient and robust parahydrogen production, distribution, and quantification system, especially for parahydrogen-based hyperpolarization NMR research.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33539068</pmid><doi>10.1021/acs.analchem.0c05129</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4116-6122</orcidid><orcidid>https://orcid.org/0000-0002-8745-8801</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-02, Vol.93 (7), p.3594-3601 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8011325 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biomedical materials Catalysis Catalysts Chemistry Copper Enrichment Gas pressure Hydrogen Hyperpolarization Magnetic Resonance Imaging Magnetic Resonance Spectroscopy NMR NMR spectroscopy Nuclear magnetic resonance Robustness Signal detection Spectroscopy Spectrum analysis Thermal coupling |
title | Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T09%3A01%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clinical-Scale%20Production%20of%20Nearly%20Pure%20(%3E98.5%25)%20Parahydrogen%20and%20Quantification%20by%20Benchtop%20NMR%20Spectroscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Nantogma,%20Shiraz&rft.date=2021-02-23&rft.volume=93&rft.issue=7&rft.spage=3594&rft.epage=3601&rft.pages=3594-3601&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c05129&rft_dat=%3Cproquest_pubme%3E2487150221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2498419674&rft_id=info:pmid/33539068&rfr_iscdi=true |