A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand
In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S, exposed E, symptomatically infected Is, asymptomatically infected Ia, quaran...
Gespeichert in:
Veröffentlicht in: | Computational and mathematical methods in medicine 2021, Vol.2021, p.6664483-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 6664483 |
container_title | Computational and mathematical methods in medicine |
container_volume | 2021 |
creator | Riyapan, Pakwan Shuaib, Sherif Eneye Intarasit, Arthit |
description | In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S, exposed E, symptomatically infected Is, asymptomatically infected Ia, quarantined Q, recovered R, and death D, respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as Rcvd19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if Rcvd191. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic. |
doi_str_mv | 10.1155/2021/6664483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8010525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508894952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-6a2ca1266f3b55c530f1c123e621fcfee24af16fd48c22dd91c80444e2c66ef83</originalsourceid><addsrcrecordid>eNp9kctLAzEQxoMoWh83z5KjYNdmskma9SDU-oQWBR94CzGbuLH7qJut4n_vltaiF08zML_55vEhtA_kGIDzHiUUekIIxmS8hjrQZzISfZDrq5w8b6HtEN4I4dDnsIm24li2rYJ30GiAx7rJbKEbb3SOx1Vqc1w5PLx9ujmPIMF3ukxt4c0JHuChDhbfN7P0a46c6fJ1Uk26-CHTPm-xXbThdB7s3jLuoMfLi4fhdTS6vboZDkaRYZQ0kdDUaKBCuPiFc8Nj4sAAja2g4IyzljLtQLiUSUNpmiZgJGGMWWqEsE7GO-h0oTudvRQ2NbZsap2rae0LXX-pSnv1t1L6TL1WH0oSIJzyVuBwKVBX7zMbGlX4YGzeHmGrWVCUEykTlnDaot0FauoqhNq61Rggam6Amhuglga0-MHv1Vbwz8db4GgBZL5M9af_X-4bWhmLwA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508894952</pqid></control><display><type>article</type><title>A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand</title><source>Electronic Journals Library</source><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Riyapan, Pakwan ; Shuaib, Sherif Eneye ; Intarasit, Arthit</creator><contributor>Nishizawa, Kazuhisa</contributor><creatorcontrib>Riyapan, Pakwan ; Shuaib, Sherif Eneye ; Intarasit, Arthit ; Nishizawa, Kazuhisa</creatorcontrib><description>In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S, exposed E, symptomatically infected Is, asymptomatically infected Ia, quarantined Q, recovered R, and death D, respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as Rcvd19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if Rcvd19<1. On the other hand, the global asymptotic stability of the endemic equilibrium occurs if Rcvd19>1. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.</description><identifier>ISSN: 1748-670X</identifier><identifier>EISSN: 1748-6718</identifier><identifier>DOI: 10.1155/2021/6664483</identifier><identifier>PMID: 33815565</identifier><language>eng</language><publisher>United States: Hindawi</publisher><subject>Basic Reproduction Number ; Computer Simulation ; COVID-19 - epidemiology ; COVID-19 - prevention & control ; COVID-19 - transmission ; Disease Susceptibility ; Humans ; Masks ; Mathematical Concepts ; Models, Biological ; Pandemics - prevention & control ; Pandemics - statistics & numerical data ; SARS-CoV-2 ; Thailand - epidemiology</subject><ispartof>Computational and mathematical methods in medicine, 2021, Vol.2021, p.6664483-11</ispartof><rights>Copyright © 2021 Pakwan Riyapan et al.</rights><rights>Copyright © 2021 Pakwan Riyapan et al. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-6a2ca1266f3b55c530f1c123e621fcfee24af16fd48c22dd91c80444e2c66ef83</citedby><cites>FETCH-LOGICAL-c420t-6a2ca1266f3b55c530f1c123e621fcfee24af16fd48c22dd91c80444e2c66ef83</cites><orcidid>0000-0002-5070-0772 ; 0000-0002-2945-3922 ; 0000-0001-9333-121X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010525/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010525/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33815565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nishizawa, Kazuhisa</contributor><creatorcontrib>Riyapan, Pakwan</creatorcontrib><creatorcontrib>Shuaib, Sherif Eneye</creatorcontrib><creatorcontrib>Intarasit, Arthit</creatorcontrib><title>A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand</title><title>Computational and mathematical methods in medicine</title><addtitle>Comput Math Methods Med</addtitle><description>In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S, exposed E, symptomatically infected Is, asymptomatically infected Ia, quarantined Q, recovered R, and death D, respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as Rcvd19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if Rcvd19<1. On the other hand, the global asymptotic stability of the endemic equilibrium occurs if Rcvd19>1. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.</description><subject>Basic Reproduction Number</subject><subject>Computer Simulation</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 - transmission</subject><subject>Disease Susceptibility</subject><subject>Humans</subject><subject>Masks</subject><subject>Mathematical Concepts</subject><subject>Models, Biological</subject><subject>Pandemics - prevention & control</subject><subject>Pandemics - statistics & numerical data</subject><subject>SARS-CoV-2</subject><subject>Thailand - epidemiology</subject><issn>1748-670X</issn><issn>1748-6718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kctLAzEQxoMoWh83z5KjYNdmskma9SDU-oQWBR94CzGbuLH7qJut4n_vltaiF08zML_55vEhtA_kGIDzHiUUekIIxmS8hjrQZzISfZDrq5w8b6HtEN4I4dDnsIm24li2rYJ30GiAx7rJbKEbb3SOx1Vqc1w5PLx9ujmPIMF3ukxt4c0JHuChDhbfN7P0a46c6fJ1Uk26-CHTPm-xXbThdB7s3jLuoMfLi4fhdTS6vboZDkaRYZQ0kdDUaKBCuPiFc8Nj4sAAja2g4IyzljLtQLiUSUNpmiZgJGGMWWqEsE7GO-h0oTudvRQ2NbZsap2rae0LXX-pSnv1t1L6TL1WH0oSIJzyVuBwKVBX7zMbGlX4YGzeHmGrWVCUEykTlnDaot0FauoqhNq61Rggam6Amhuglga0-MHv1Vbwz8db4GgBZL5M9af_X-4bWhmLwA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Riyapan, Pakwan</creator><creator>Shuaib, Sherif Eneye</creator><creator>Intarasit, Arthit</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5070-0772</orcidid><orcidid>https://orcid.org/0000-0002-2945-3922</orcidid><orcidid>https://orcid.org/0000-0001-9333-121X</orcidid></search><sort><creationdate>2021</creationdate><title>A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand</title><author>Riyapan, Pakwan ; Shuaib, Sherif Eneye ; Intarasit, Arthit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-6a2ca1266f3b55c530f1c123e621fcfee24af16fd48c22dd91c80444e2c66ef83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic Reproduction Number</topic><topic>Computer Simulation</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 - transmission</topic><topic>Disease Susceptibility</topic><topic>Humans</topic><topic>Masks</topic><topic>Mathematical Concepts</topic><topic>Models, Biological</topic><topic>Pandemics - prevention & control</topic><topic>Pandemics - statistics & numerical data</topic><topic>SARS-CoV-2</topic><topic>Thailand - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riyapan, Pakwan</creatorcontrib><creatorcontrib>Shuaib, Sherif Eneye</creatorcontrib><creatorcontrib>Intarasit, Arthit</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational and mathematical methods in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riyapan, Pakwan</au><au>Shuaib, Sherif Eneye</au><au>Intarasit, Arthit</au><au>Nishizawa, Kazuhisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand</atitle><jtitle>Computational and mathematical methods in medicine</jtitle><addtitle>Comput Math Methods Med</addtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><spage>6664483</spage><epage>11</epage><pages>6664483-11</pages><issn>1748-670X</issn><eissn>1748-6718</eissn><abstract>In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S, exposed E, symptomatically infected Is, asymptomatically infected Ia, quarantined Q, recovered R, and death D, respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as Rcvd19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if Rcvd19<1. On the other hand, the global asymptotic stability of the endemic equilibrium occurs if Rcvd19>1. The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.</abstract><cop>United States</cop><pub>Hindawi</pub><pmid>33815565</pmid><doi>10.1155/2021/6664483</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5070-0772</orcidid><orcidid>https://orcid.org/0000-0002-2945-3922</orcidid><orcidid>https://orcid.org/0000-0001-9333-121X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-670X |
ispartof | Computational and mathematical methods in medicine, 2021, Vol.2021, p.6664483-11 |
issn | 1748-670X 1748-6718 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8010525 |
source | Electronic Journals Library; Open Access: PubMed Central; MEDLINE; Wiley Open Access; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Basic Reproduction Number Computer Simulation COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 - transmission Disease Susceptibility Humans Masks Mathematical Concepts Models, Biological Pandemics - prevention & control Pandemics - statistics & numerical data SARS-CoV-2 Thailand - epidemiology |
title | A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A28%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathematical%20Model%20of%20COVID-19%20Pandemic:%20A%20Case%20Study%20of%20Bangkok,%20Thailand&rft.jtitle=Computational%20and%20mathematical%20methods%20in%20medicine&rft.au=Riyapan,%20Pakwan&rft.date=2021&rft.volume=2021&rft.spage=6664483&rft.epage=11&rft.pages=6664483-11&rft.issn=1748-670X&rft.eissn=1748-6718&rft_id=info:doi/10.1155/2021/6664483&rft_dat=%3Cproquest_pubme%3E2508894952%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508894952&rft_id=info:pmid/33815565&rfr_iscdi=true |