Bioelectrical domain walls in homogeneous tissues

Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in princip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-03, Vol.16 (3), p.357-364
Hauptverfasser: McNamara, Harold M., Salegame, Rajath, Tanoury, Ziad Al, Xu, Haitan, Begum, Shahinoor, Ortiz, Gloria, Pourquie, Olivier, Cohen, Adam E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 3
container_start_page 357
container_title Nature physics
container_volume 16
creator McNamara, Harold M.
Salegame, Rajath
Tanoury, Ziad Al
Xu, Haitan
Begum, Shahinoor
Ortiz, Gloria
Pourquie, Olivier
Cohen, Adam E.
description Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking. A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.
doi_str_mv 10.1038/s41567-019-0765-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8008956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507728310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotlZ_gBspuHEzmncyG0GLLyi40XXITG_aKTOTmkwV_72prfUBrnLhfvfknnsQOib4nGCmLyInQqoMkzzDSoqM76A-UVxklGuyu60V66GDGOcYcyoJ20c9xlSOc837iFxXHmoou1CVth5OfGOrdvhm6zoOUzHzjZ9CC34Zh10V4xLiIdpzto5wtHkH6Pn25ml0n40f7x5GV-Os5Ap3mVSM5VZCwSUjDiSGolAEXM4IFFYJTYgQVkvrrCuF5bYotaBOUyEIYOfYAF2udRfLooFJCW0XbG0WoWpseDfeVuZ3p61mZupfjcZY50ImgbONQPAvafHONFUsoa7tpx9DBVaKapZOOUCnf9C5X4Y22TOUJUZSlvNEkTVVBh9jALddhmCzCsSsAzEpELMKxKxmTn662E58JZAAugZiarVTCN9f_6_6ARRylpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372862394</pqid></control><display><type>article</type><title>Bioelectrical domain walls in homogeneous tissues</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</creator><creatorcontrib>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</creatorcontrib><description>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking. A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0765-4</identifier><identifier>PMID: 33790984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 631/57/2270 ; 639/766/119 ; 639/766/119/2795 ; Atomic ; Bioelectricity ; Broken symmetry ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Domain walls ; Electric potential ; Electrophysiology ; Embryonic growth stage ; Human motion ; Mathematical and Computational Physics ; Membranes ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Reaction-diffusion equations ; Resistance ; Signaling ; Stem cells ; Symmetry ; Theoretical ; Tissues ; Voltage</subject><ispartof>Nature physics, 2020-03, Vol.16 (3), p.357-364</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</citedby><cites>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</cites><orcidid>0000-0002-8699-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33790984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNamara, Harold M.</creatorcontrib><creatorcontrib>Salegame, Rajath</creatorcontrib><creatorcontrib>Tanoury, Ziad Al</creatorcontrib><creatorcontrib>Xu, Haitan</creatorcontrib><creatorcontrib>Begum, Shahinoor</creatorcontrib><creatorcontrib>Ortiz, Gloria</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Cohen, Adam E.</creatorcontrib><title>Bioelectrical domain walls in homogeneous tissues</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking. A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</description><subject>631/57</subject><subject>631/57/2270</subject><subject>639/766/119</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Bioelectricity</subject><subject>Broken symmetry</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Domain walls</subject><subject>Electric potential</subject><subject>Electrophysiology</subject><subject>Embryonic growth stage</subject><subject>Human motion</subject><subject>Mathematical and Computational Physics</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction-diffusion equations</subject><subject>Resistance</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Tissues</subject><subject>Voltage</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLAzEUhYMotlZ_gBspuHEzmncyG0GLLyi40XXITG_aKTOTmkwV_72prfUBrnLhfvfknnsQOib4nGCmLyInQqoMkzzDSoqM76A-UVxklGuyu60V66GDGOcYcyoJ20c9xlSOc837iFxXHmoou1CVth5OfGOrdvhm6zoOUzHzjZ9CC34Zh10V4xLiIdpzto5wtHkH6Pn25ml0n40f7x5GV-Os5Ap3mVSM5VZCwSUjDiSGolAEXM4IFFYJTYgQVkvrrCuF5bYotaBOUyEIYOfYAF2udRfLooFJCW0XbG0WoWpseDfeVuZ3p61mZupfjcZY50ImgbONQPAvafHONFUsoa7tpx9DBVaKapZOOUCnf9C5X4Y22TOUJUZSlvNEkTVVBh9jALddhmCzCsSsAzEpELMKxKxmTn662E58JZAAugZiarVTCN9f_6_6ARRylpY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>McNamara, Harold M.</creator><creator>Salegame, Rajath</creator><creator>Tanoury, Ziad Al</creator><creator>Xu, Haitan</creator><creator>Begum, Shahinoor</creator><creator>Ortiz, Gloria</creator><creator>Pourquie, Olivier</creator><creator>Cohen, Adam E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8699-2404</orcidid></search><sort><creationdate>20200301</creationdate><title>Bioelectrical domain walls in homogeneous tissues</title><author>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/57</topic><topic>631/57/2270</topic><topic>639/766/119</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Bioelectricity</topic><topic>Broken symmetry</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Domain walls</topic><topic>Electric potential</topic><topic>Electrophysiology</topic><topic>Embryonic growth stage</topic><topic>Human motion</topic><topic>Mathematical and Computational Physics</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction-diffusion equations</topic><topic>Resistance</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Tissues</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNamara, Harold M.</creatorcontrib><creatorcontrib>Salegame, Rajath</creatorcontrib><creatorcontrib>Tanoury, Ziad Al</creatorcontrib><creatorcontrib>Xu, Haitan</creatorcontrib><creatorcontrib>Begum, Shahinoor</creatorcontrib><creatorcontrib>Ortiz, Gloria</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Cohen, Adam E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNamara, Harold M.</au><au>Salegame, Rajath</au><au>Tanoury, Ziad Al</au><au>Xu, Haitan</au><au>Begum, Shahinoor</au><au>Ortiz, Gloria</au><au>Pourquie, Olivier</au><au>Cohen, Adam E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioelectrical domain walls in homogeneous tissues</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>357</spage><epage>364</epage><pages>357-364</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking. A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33790984</pmid><doi>10.1038/s41567-019-0765-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8699-2404</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-03, Vol.16 (3), p.357-364
issn 1745-2473
1745-2481
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8008956
source Nature; Alma/SFX Local Collection
subjects 631/57
631/57/2270
639/766/119
639/766/119/2795
Atomic
Bioelectricity
Broken symmetry
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Domain walls
Electric potential
Electrophysiology
Embryonic growth stage
Human motion
Mathematical and Computational Physics
Membranes
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Reaction-diffusion equations
Resistance
Signaling
Stem cells
Symmetry
Theoretical
Tissues
Voltage
title Bioelectrical domain walls in homogeneous tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioelectrical%20domain%20walls%20in%20homogeneous%20tissues&rft.jtitle=Nature%20physics&rft.au=McNamara,%20Harold%20M.&rft.date=2020-03-01&rft.volume=16&rft.issue=3&rft.spage=357&rft.epage=364&rft.pages=357-364&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0765-4&rft_dat=%3Cproquest_pubme%3E2507728310%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372862394&rft_id=info:pmid/33790984&rfr_iscdi=true