Bioelectrical domain walls in homogeneous tissues
Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in princip...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-03, Vol.16 (3), p.357-364 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | 3 |
container_start_page | 357 |
container_title | Nature physics |
container_volume | 16 |
creator | McNamara, Harold M. Salegame, Rajath Tanoury, Ziad Al Xu, Haitan Begum, Shahinoor Ortiz, Gloria Pourquie, Olivier Cohen, Adam E. |
description | Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking.
A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism. |
doi_str_mv | 10.1038/s41567-019-0765-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8008956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2507728310</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</originalsourceid><addsrcrecordid>eNp1kUtLAzEUhYMotlZ_gBspuHEzmncyG0GLLyi40XXITG_aKTOTmkwV_72prfUBrnLhfvfknnsQOib4nGCmLyInQqoMkzzDSoqM76A-UVxklGuyu60V66GDGOcYcyoJ20c9xlSOc837iFxXHmoou1CVth5OfGOrdvhm6zoOUzHzjZ9CC34Zh10V4xLiIdpzto5wtHkH6Pn25ml0n40f7x5GV-Os5Ap3mVSM5VZCwSUjDiSGolAEXM4IFFYJTYgQVkvrrCuF5bYotaBOUyEIYOfYAF2udRfLooFJCW0XbG0WoWpseDfeVuZ3p61mZupfjcZY50ImgbONQPAvafHONFUsoa7tpx9DBVaKapZOOUCnf9C5X4Y22TOUJUZSlvNEkTVVBh9jALddhmCzCsSsAzEpELMKxKxmTn662E58JZAAugZiarVTCN9f_6_6ARRylpY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2372862394</pqid></control><display><type>article</type><title>Bioelectrical domain walls in homogeneous tissues</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</creator><creatorcontrib>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</creatorcontrib><description>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking.
A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0765-4</identifier><identifier>PMID: 33790984</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57 ; 631/57/2270 ; 639/766/119 ; 639/766/119/2795 ; Atomic ; Bioelectricity ; Broken symmetry ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Domain walls ; Electric potential ; Electrophysiology ; Embryonic growth stage ; Human motion ; Mathematical and Computational Physics ; Membranes ; Molecular ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Reaction-diffusion equations ; Resistance ; Signaling ; Stem cells ; Symmetry ; Theoretical ; Tissues ; Voltage</subject><ispartof>Nature physics, 2020-03, Vol.16 (3), p.357-364</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</citedby><cites>FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</cites><orcidid>0000-0002-8699-2404</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33790984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNamara, Harold M.</creatorcontrib><creatorcontrib>Salegame, Rajath</creatorcontrib><creatorcontrib>Tanoury, Ziad Al</creatorcontrib><creatorcontrib>Xu, Haitan</creatorcontrib><creatorcontrib>Begum, Shahinoor</creatorcontrib><creatorcontrib>Ortiz, Gloria</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Cohen, Adam E.</creatorcontrib><title>Bioelectrical domain walls in homogeneous tissues</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking.
A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</description><subject>631/57</subject><subject>631/57/2270</subject><subject>639/766/119</subject><subject>639/766/119/2795</subject><subject>Atomic</subject><subject>Bioelectricity</subject><subject>Broken symmetry</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Domain walls</subject><subject>Electric potential</subject><subject>Electrophysiology</subject><subject>Embryonic growth stage</subject><subject>Human motion</subject><subject>Mathematical and Computational Physics</subject><subject>Membranes</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reaction-diffusion equations</subject><subject>Resistance</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Tissues</subject><subject>Voltage</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLAzEUhYMotlZ_gBspuHEzmncyG0GLLyi40XXITG_aKTOTmkwV_72prfUBrnLhfvfknnsQOib4nGCmLyInQqoMkzzDSoqM76A-UVxklGuyu60V66GDGOcYcyoJ20c9xlSOc837iFxXHmoou1CVth5OfGOrdvhm6zoOUzHzjZ9CC34Zh10V4xLiIdpzto5wtHkH6Pn25ml0n40f7x5GV-Os5Ap3mVSM5VZCwSUjDiSGolAEXM4IFFYJTYgQVkvrrCuF5bYotaBOUyEIYOfYAF2udRfLooFJCW0XbG0WoWpseDfeVuZ3p61mZupfjcZY50ImgbONQPAvafHONFUsoa7tpx9DBVaKapZOOUCnf9C5X4Y22TOUJUZSlvNEkTVVBh9jALddhmCzCsSsAzEpELMKxKxmTn662E58JZAAugZiarVTCN9f_6_6ARRylpY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>McNamara, Harold M.</creator><creator>Salegame, Rajath</creator><creator>Tanoury, Ziad Al</creator><creator>Xu, Haitan</creator><creator>Begum, Shahinoor</creator><creator>Ortiz, Gloria</creator><creator>Pourquie, Olivier</creator><creator>Cohen, Adam E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8699-2404</orcidid></search><sort><creationdate>20200301</creationdate><title>Bioelectrical domain walls in homogeneous tissues</title><author>McNamara, Harold M. ; Salegame, Rajath ; Tanoury, Ziad Al ; Xu, Haitan ; Begum, Shahinoor ; Ortiz, Gloria ; Pourquie, Olivier ; Cohen, Adam E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-67339a6eb4631fe60ebb71ef931eba7581155a86afafc5a4abc852f82551e0ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/57</topic><topic>631/57/2270</topic><topic>639/766/119</topic><topic>639/766/119/2795</topic><topic>Atomic</topic><topic>Bioelectricity</topic><topic>Broken symmetry</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Domain walls</topic><topic>Electric potential</topic><topic>Electrophysiology</topic><topic>Embryonic growth stage</topic><topic>Human motion</topic><topic>Mathematical and Computational Physics</topic><topic>Membranes</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reaction-diffusion equations</topic><topic>Resistance</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Tissues</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNamara, Harold M.</creatorcontrib><creatorcontrib>Salegame, Rajath</creatorcontrib><creatorcontrib>Tanoury, Ziad Al</creatorcontrib><creatorcontrib>Xu, Haitan</creatorcontrib><creatorcontrib>Begum, Shahinoor</creatorcontrib><creatorcontrib>Ortiz, Gloria</creatorcontrib><creatorcontrib>Pourquie, Olivier</creatorcontrib><creatorcontrib>Cohen, Adam E.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNamara, Harold M.</au><au>Salegame, Rajath</au><au>Tanoury, Ziad Al</au><au>Xu, Haitan</au><au>Begum, Shahinoor</au><au>Ortiz, Gloria</au><au>Pourquie, Olivier</au><au>Cohen, Adam E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioelectrical domain walls in homogeneous tissues</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>16</volume><issue>3</issue><spage>357</spage><epage>364</epage><pages>357-364</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Electrical signalling in biology is typically associated with action potentials—transient spikes in membrane voltage that return to baseline. Hodgkin–Huxley and related conductance-based models of electrophysiology belong to a more general class of reaction–diffusion equations that could, in principle, support the spontaneous emergence of patterns of membrane voltage that are stable in time but structured in space. Here, we show theoretically and experimentally that homogeneous or nearly homogeneous tissues can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism, leading to the formation of domains with different resting potentials separated by stable bioelectrical domain walls. Transitions from one resting potential to another can occur through long-range migration of these domain walls. We map bioelectrical domain wall motion using all-optical electrophysiology in an engineered cell line and in human induced pluripotent stem cell (iPSC)-derived myoblasts. Bioelectrical domain wall migration may occur during embryonic development and during physiological signalling processes in polarized tissues. These results demonstrate that nominally homogeneous tissues can undergo spontaneous bioelectrical spatial symmetry breaking.
A detailed theoretical and experimental investigation of homogeneous cell tissues finds that they can undergo spontaneous spatial symmetry breaking through a purely electrophysiological mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33790984</pmid><doi>10.1038/s41567-019-0765-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8699-2404</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-03, Vol.16 (3), p.357-364 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8008956 |
source | Nature; Alma/SFX Local Collection |
subjects | 631/57 631/57/2270 639/766/119 639/766/119/2795 Atomic Bioelectricity Broken symmetry Classical and Continuum Physics Complex Systems Condensed Matter Physics Domain walls Electric potential Electrophysiology Embryonic growth stage Human motion Mathematical and Computational Physics Membranes Molecular Optical and Plasma Physics Physics Physics and Astronomy Reaction-diffusion equations Resistance Signaling Stem cells Symmetry Theoretical Tissues Voltage |
title | Bioelectrical domain walls in homogeneous tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioelectrical%20domain%20walls%20in%20homogeneous%20tissues&rft.jtitle=Nature%20physics&rft.au=McNamara,%20Harold%20M.&rft.date=2020-03-01&rft.volume=16&rft.issue=3&rft.spage=357&rft.epage=364&rft.pages=357-364&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0765-4&rft_dat=%3Cproquest_pubme%3E2507728310%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2372862394&rft_id=info:pmid/33790984&rfr_iscdi=true |