Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland
This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Centra...
Gespeichert in:
Veröffentlicht in: | Ecological informatics 2021-07, Vol.63, p.101284-101284, Article 101284 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101284 |
---|---|
container_issue | |
container_start_page | 101284 |
container_title | Ecological informatics |
container_volume | 63 |
creator | Kowalski, Piotr Andrzej Szwagrzyk, Marcin Kielpinska, Jolanta Konior, Aleksander Kusy, Maciej |
description | This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland.
•Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic. |
doi_str_mv | 10.1016/j.ecoinf.2021.101284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574954121000753</els_id><sourcerecordid>2508890507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwDRDysUhkGTvxxr4goeVfparlAFwtZzKmXiXxYicr7bevoy2lXHqy5Te_NzN-RfGaw4oDX7_frgiDH91KgODLk1D1k-KUq0aVILl4mu-yqUsta35SvEhpC1BXSonnxUlVKS5B6NMCr-aBokfbMzva_pB8YsExZ3EKMb1jO4uUlY75caIx-emwyNMNMQwxjJbtfZwTO99c_7r4VHL9ltHOdzR4zAT7HvrMviyeOdsnenV3nhU_v3z-sflWXl5_vdh8vCyxXldT2SI0ldWOwFbCilZxjYjS5ambRgupwGmlRaOdg5YAQOrM1V0r1xprBdVZ8eHou5vbgTqkcYq2N7voBxsPJlhv_ldGf2N-h71RAGvJm2xwfmcQw5-Z0mQGn5D6vASFORkhQSkNEpbS-liKMaQUyd234WCWfMzWHPMxSz7mmE_G3jwc8R76G8i_HSh_1N5TNAk9jUidj4ST6YJ_vMMtoUeifg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508890507</pqid></control><display><type>article</type><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</creator><creatorcontrib>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</creatorcontrib><description>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland.
•Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</description><identifier>ISSN: 1574-9541</identifier><identifier>EISSN: 1878-0512</identifier><identifier>DOI: 10.1016/j.ecoinf.2021.101284</identifier><identifier>PMID: 33815029</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Corona virus ; COVID-19 ; Disease curve ; Epidemiological model ; Excess mortality ; Factor analysis ; Least-squares estimation ; Multivariate linear regression ; Pearson's correlation</subject><ispartof>Ecological informatics, 2021-07, Vol.63, p.101284-101284, Article 101284</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</citedby><cites>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecoinf.2021.101284$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33815029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalski, Piotr Andrzej</creatorcontrib><creatorcontrib>Szwagrzyk, Marcin</creatorcontrib><creatorcontrib>Kielpinska, Jolanta</creatorcontrib><creatorcontrib>Konior, Aleksander</creatorcontrib><creatorcontrib>Kusy, Maciej</creatorcontrib><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><title>Ecological informatics</title><addtitle>Ecol Inform</addtitle><description>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland.
•Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</description><subject>Corona virus</subject><subject>COVID-19</subject><subject>Disease curve</subject><subject>Epidemiological model</subject><subject>Excess mortality</subject><subject>Factor analysis</subject><subject>Least-squares estimation</subject><subject>Multivariate linear regression</subject><subject>Pearson's correlation</subject><issn>1574-9541</issn><issn>1878-0512</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEoqXwDRDysUhkGTvxxr4goeVfparlAFwtZzKmXiXxYicr7bevoy2lXHqy5Te_NzN-RfGaw4oDX7_frgiDH91KgODLk1D1k-KUq0aVILl4mu-yqUsta35SvEhpC1BXSonnxUlVKS5B6NMCr-aBokfbMzva_pB8YsExZ3EKMb1jO4uUlY75caIx-emwyNMNMQwxjJbtfZwTO99c_7r4VHL9ltHOdzR4zAT7HvrMviyeOdsnenV3nhU_v3z-sflWXl5_vdh8vCyxXldT2SI0ldWOwFbCilZxjYjS5ambRgupwGmlRaOdg5YAQOrM1V0r1xprBdVZ8eHou5vbgTqkcYq2N7voBxsPJlhv_ldGf2N-h71RAGvJm2xwfmcQw5-Z0mQGn5D6vASFORkhQSkNEpbS-liKMaQUyd234WCWfMzWHPMxSz7mmE_G3jwc8R76G8i_HSh_1N5TNAk9jUidj4ST6YJ_vMMtoUeifg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kowalski, Piotr Andrzej</creator><creator>Szwagrzyk, Marcin</creator><creator>Kielpinska, Jolanta</creator><creator>Konior, Aleksander</creator><creator>Kusy, Maciej</creator><general>Elsevier B.V</general><general>The Authors. Published by Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210701</creationdate><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><author>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Corona virus</topic><topic>COVID-19</topic><topic>Disease curve</topic><topic>Epidemiological model</topic><topic>Excess mortality</topic><topic>Factor analysis</topic><topic>Least-squares estimation</topic><topic>Multivariate linear regression</topic><topic>Pearson's correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Piotr Andrzej</creatorcontrib><creatorcontrib>Szwagrzyk, Marcin</creatorcontrib><creatorcontrib>Kielpinska, Jolanta</creatorcontrib><creatorcontrib>Konior, Aleksander</creatorcontrib><creatorcontrib>Kusy, Maciej</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecological informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Piotr Andrzej</au><au>Szwagrzyk, Marcin</au><au>Kielpinska, Jolanta</au><au>Konior, Aleksander</au><au>Kusy, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</atitle><jtitle>Ecological informatics</jtitle><addtitle>Ecol Inform</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>63</volume><spage>101284</spage><epage>101284</epage><pages>101284-101284</pages><artnum>101284</artnum><issn>1574-9541</issn><eissn>1878-0512</eissn><abstract>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland.
•Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33815029</pmid><doi>10.1016/j.ecoinf.2021.101284</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-9541 |
ispartof | Ecological informatics, 2021-07, Vol.63, p.101284-101284, Article 101284 |
issn | 1574-9541 1878-0512 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006517 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Corona virus COVID-19 Disease curve Epidemiological model Excess mortality Factor analysis Least-squares estimation Multivariate linear regression Pearson's correlation |
title | Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20factors,%20pace%20and%20intensity%20of%20the%20corona%20virus%20(COVID-19)%20epidemic%20in%20Poland&rft.jtitle=Ecological%20informatics&rft.au=Kowalski,%20Piotr%20Andrzej&rft.date=2021-07-01&rft.volume=63&rft.spage=101284&rft.epage=101284&rft.pages=101284-101284&rft.artnum=101284&rft.issn=1574-9541&rft.eissn=1878-0512&rft_id=info:doi/10.1016/j.ecoinf.2021.101284&rft_dat=%3Cproquest_pubme%3E2508890507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508890507&rft_id=info:pmid/33815029&rft_els_id=S1574954121000753&rfr_iscdi=true |