Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland

This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Centra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological informatics 2021-07, Vol.63, p.101284-101284, Article 101284
Hauptverfasser: Kowalski, Piotr Andrzej, Szwagrzyk, Marcin, Kielpinska, Jolanta, Konior, Aleksander, Kusy, Maciej
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101284
container_issue
container_start_page 101284
container_title Ecological informatics
container_volume 63
creator Kowalski, Piotr Andrzej
Szwagrzyk, Marcin
Kielpinska, Jolanta
Konior, Aleksander
Kusy, Maciej
description This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland. •Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.
doi_str_mv 10.1016/j.ecoinf.2021.101284
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1574954121000753</els_id><sourcerecordid>2508890507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxSMEoqXwDRDysUhkGTvxxr4goeVfparlAFwtZzKmXiXxYicr7bevoy2lXHqy5Te_NzN-RfGaw4oDX7_frgiDH91KgODLk1D1k-KUq0aVILl4mu-yqUsta35SvEhpC1BXSonnxUlVKS5B6NMCr-aBokfbMzva_pB8YsExZ3EKMb1jO4uUlY75caIx-emwyNMNMQwxjJbtfZwTO99c_7r4VHL9ltHOdzR4zAT7HvrMviyeOdsnenV3nhU_v3z-sflWXl5_vdh8vCyxXldT2SI0ldWOwFbCilZxjYjS5ambRgupwGmlRaOdg5YAQOrM1V0r1xprBdVZ8eHou5vbgTqkcYq2N7voBxsPJlhv_ldGf2N-h71RAGvJm2xwfmcQw5-Z0mQGn5D6vASFORkhQSkNEpbS-liKMaQUyd234WCWfMzWHPMxSz7mmE_G3jwc8R76G8i_HSh_1N5TNAk9jUidj4ST6YJ_vMMtoUeifg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508890507</pqid></control><display><type>article</type><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</creator><creatorcontrib>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</creatorcontrib><description>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland. •Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</description><identifier>ISSN: 1574-9541</identifier><identifier>EISSN: 1878-0512</identifier><identifier>DOI: 10.1016/j.ecoinf.2021.101284</identifier><identifier>PMID: 33815029</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Corona virus ; COVID-19 ; Disease curve ; Epidemiological model ; Excess mortality ; Factor analysis ; Least-squares estimation ; Multivariate linear regression ; Pearson's correlation</subject><ispartof>Ecological informatics, 2021-07, Vol.63, p.101284-101284, Article 101284</ispartof><rights>2021 The Authors</rights><rights>2021 The Authors.</rights><rights>2021 The Authors 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</citedby><cites>FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecoinf.2021.101284$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33815029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalski, Piotr Andrzej</creatorcontrib><creatorcontrib>Szwagrzyk, Marcin</creatorcontrib><creatorcontrib>Kielpinska, Jolanta</creatorcontrib><creatorcontrib>Konior, Aleksander</creatorcontrib><creatorcontrib>Kusy, Maciej</creatorcontrib><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><title>Ecological informatics</title><addtitle>Ecol Inform</addtitle><description>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland. •Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</description><subject>Corona virus</subject><subject>COVID-19</subject><subject>Disease curve</subject><subject>Epidemiological model</subject><subject>Excess mortality</subject><subject>Factor analysis</subject><subject>Least-squares estimation</subject><subject>Multivariate linear regression</subject><subject>Pearson's correlation</subject><issn>1574-9541</issn><issn>1878-0512</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxSMEoqXwDRDysUhkGTvxxr4goeVfparlAFwtZzKmXiXxYicr7bevoy2lXHqy5Te_NzN-RfGaw4oDX7_frgiDH91KgODLk1D1k-KUq0aVILl4mu-yqUsta35SvEhpC1BXSonnxUlVKS5B6NMCr-aBokfbMzva_pB8YsExZ3EKMb1jO4uUlY75caIx-emwyNMNMQwxjJbtfZwTO99c_7r4VHL9ltHOdzR4zAT7HvrMviyeOdsnenV3nhU_v3z-sflWXl5_vdh8vCyxXldT2SI0ldWOwFbCilZxjYjS5ambRgupwGmlRaOdg5YAQOrM1V0r1xprBdVZ8eHou5vbgTqkcYq2N7voBxsPJlhv_ldGf2N-h71RAGvJm2xwfmcQw5-Z0mQGn5D6vASFORkhQSkNEpbS-liKMaQUyd234WCWfMzWHPMxSz7mmE_G3jwc8R76G8i_HSh_1N5TNAk9jUidj4ST6YJ_vMMtoUeifg</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kowalski, Piotr Andrzej</creator><creator>Szwagrzyk, Marcin</creator><creator>Kielpinska, Jolanta</creator><creator>Konior, Aleksander</creator><creator>Kusy, Maciej</creator><general>Elsevier B.V</general><general>The Authors. Published by Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210701</creationdate><title>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</title><author>Kowalski, Piotr Andrzej ; Szwagrzyk, Marcin ; Kielpinska, Jolanta ; Konior, Aleksander ; Kusy, Maciej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-bc073a9fe0a32a2b819ccc5f0437792580f989279ff0be000594634db569c4803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Corona virus</topic><topic>COVID-19</topic><topic>Disease curve</topic><topic>Epidemiological model</topic><topic>Excess mortality</topic><topic>Factor analysis</topic><topic>Least-squares estimation</topic><topic>Multivariate linear regression</topic><topic>Pearson's correlation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Piotr Andrzej</creatorcontrib><creatorcontrib>Szwagrzyk, Marcin</creatorcontrib><creatorcontrib>Kielpinska, Jolanta</creatorcontrib><creatorcontrib>Konior, Aleksander</creatorcontrib><creatorcontrib>Kusy, Maciej</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Ecological informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Piotr Andrzej</au><au>Szwagrzyk, Marcin</au><au>Kielpinska, Jolanta</au><au>Konior, Aleksander</au><au>Kusy, Maciej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland</atitle><jtitle>Ecological informatics</jtitle><addtitle>Ecol Inform</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>63</volume><spage>101284</spage><epage>101284</epage><pages>101284-101284</pages><artnum>101284</artnum><issn>1574-9541</issn><eissn>1878-0512</eissn><abstract>This article focuses on a statistical analysis of the corona virus disease 2019 (COVID-19) data that appeared until November 31, 2020 in Poland. The studied database, expressed in terms of both population and air pollution (particulate) indicators, is provided mainly by the Airly company, the Central Statistical Office (GUS) and the Rogalski project. The particular measured factors, which underwent standardization, were assessed for mutual dependency by means of a Pearson correlation coefficient and analysed by a linear regression. Based on the presented models, our results indicate that air quality (air pollution level) is the most important factor in the context of enabling COVID-19 case load increase in Poland. •Poland's COVID19 course and mortality relationships and factors were investigated.•Global studies confirm linkage between air pollutants and COVID-19.•Regional data analysis for Poland has shown that smog greatly impacts caseload.•Air quality monitoring and improvement is important in overcoming the pandemic.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>33815029</pmid><doi>10.1016/j.ecoinf.2021.101284</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-9541
ispartof Ecological informatics, 2021-07, Vol.63, p.101284-101284, Article 101284
issn 1574-9541
1878-0512
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8006517
source Elsevier ScienceDirect Journals Complete
subjects Corona virus
COVID-19
Disease curve
Epidemiological model
Excess mortality
Factor analysis
Least-squares estimation
Multivariate linear regression
Pearson's correlation
title Numerical analysis of factors, pace and intensity of the corona virus (COVID-19) epidemic in Poland
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20factors,%20pace%20and%20intensity%20of%20the%20corona%20virus%20(COVID-19)%20epidemic%20in%20Poland&rft.jtitle=Ecological%20informatics&rft.au=Kowalski,%20Piotr%20Andrzej&rft.date=2021-07-01&rft.volume=63&rft.spage=101284&rft.epage=101284&rft.pages=101284-101284&rft.artnum=101284&rft.issn=1574-9541&rft.eissn=1878-0512&rft_id=info:doi/10.1016/j.ecoinf.2021.101284&rft_dat=%3Cproquest_pubme%3E2508890507%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508890507&rft_id=info:pmid/33815029&rft_els_id=S1574954121000753&rfr_iscdi=true