Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms

Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in immunology 2021-04, Vol.42 (4), p.280-292
Hauptverfasser: Xuan, Wenjing, Lesniak, Maciej S., James, Charles David, Heimberger, Amy B., Chen, Peiwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 292
container_issue 4
container_start_page 280
container_title Trends in immunology
container_volume 42
creator Xuan, Wenjing
Lesniak, Maciej S.
James, Charles David
Heimberger, Amy B.
Chen, Peiwen
description Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM–GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM–GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes. Symbiotic glioblastoma–macrophage/microglia (GBM–GAM) interactions reveal synthetic lethality in GBM harboring a deficiency in a specific tumor suppressor gene (e.g., PTEN, NF1, or TP53).Cancer cell-intrinsic activation of oncogenes (e.g., EGFR and CLOCK) can shape a protumor immune response by modulating GAM biology.GBM–GAM symbiosis can contribute to GBM progression by promoting glioma stem cell (GSC) stemness, GBM cell proliferation, survival, and migration as well as by suppressing T cell-mediated immune responses in mouse and patient-derived xenograft (PDX) models.Characterizing GBM–GAM symbiosis might reveal personalized therapeutic targets. For example, LOX and CLOCK inhibition can impair tumor progression and GAM infiltration, specifically in PTEN-deficient and CLOCK-high GBM in mouse and PDX models, respectively.
doi_str_mv 10.1016/j.it.2021.02.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8005482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1471490621000284</els_id><sourcerecordid>2505340903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-7c3eefd49ec366ff7064eea1d6fe3500a0cebabd2e5c832c6e8ff3e2b5cdafaf3</originalsourceid><addsrcrecordid>eNp1kb1uFDEUhUcIREKgp0Ij0dDM5PpvfiiQog0kSFlRAAWV5bGvd72asZexNyJd3oE35ElwtMkKkKh8JX_36J5ziuIlgZoAaU43tUs1BUpqoDUAf1QcE96SivcdeXyYoTkqnsW4ASCibdunxRFjTcN6wY6Lb4vgE_5I1Tlu0Rv0qbwYXRhGFVOY1K_bn0ul57BdqxWeLl0eV6NT5eebaXAhulgqb8qzGIN2KqEpl6jXyrs4xefFE6vGiC_u35Pi64f3XxaX1dWni4-Ls6tK81akqtUM0Rreo85HWdtCwxEVMY1FJgAUaBzUYCgK3TGqG-ysZUgHoY2yyrKT4t1ed7sbJjQ6W5jVKLezm9R8I4Ny8u8f79ZyFa5lByB4R7PAm3uBOXzfYUxyclHjOCqPYRclzWnyrut4n9HX_6CbsJt9tiepAME49MAyBXsqpxXjjPZwDAF515vcSJfkXW8SqMy95ZVXf5o4LDwUlYG3ewBzlNcOZxm1Q6_RuBl1kia4_6v_BkDwrGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505340903</pqid></control><display><type>article</type><title>Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Xuan, Wenjing ; Lesniak, Maciej S. ; James, Charles David ; Heimberger, Amy B. ; Chen, Peiwen</creator><creatorcontrib>Xuan, Wenjing ; Lesniak, Maciej S. ; James, Charles David ; Heimberger, Amy B. ; Chen, Peiwen</creatorcontrib><description>Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM–GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM–GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes. Symbiotic glioblastoma–macrophage/microglia (GBM–GAM) interactions reveal synthetic lethality in GBM harboring a deficiency in a specific tumor suppressor gene (e.g., PTEN, NF1, or TP53).Cancer cell-intrinsic activation of oncogenes (e.g., EGFR and CLOCK) can shape a protumor immune response by modulating GAM biology.GBM–GAM symbiosis can contribute to GBM progression by promoting glioma stem cell (GSC) stemness, GBM cell proliferation, survival, and migration as well as by suppressing T cell-mediated immune responses in mouse and patient-derived xenograft (PDX) models.Characterizing GBM–GAM symbiosis might reveal personalized therapeutic targets. For example, LOX and CLOCK inhibition can impair tumor progression and GAM infiltration, specifically in PTEN-deficient and CLOCK-high GBM in mouse and PDX models, respectively.</description><identifier>ISSN: 1471-4906</identifier><identifier>EISSN: 1471-4981</identifier><identifier>DOI: 10.1016/j.it.2021.02.004</identifier><identifier>PMID: 33663953</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adult ; Apoptosis ; Biology ; Brain cancer ; Brain Neoplasms - genetics ; Brain tumors ; Cell growth ; Chemokines ; Context ; crosstalk ; Genes ; Genomics ; Glioblastoma ; Glioblastoma - genetics ; heterogeneity ; Humans ; Immune system ; Kinases ; Ligands ; Macrophages ; Microglia ; Mutation ; Patients ; Symbiosis ; Tumor Microenvironment ; Tumorigenesis ; Tumors</subject><ispartof>Trends in immunology, 2021-04, Vol.42 (4), p.280-292</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright © 2021 Elsevier Ltd. All rights reserved.</rights><rights>2021. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-7c3eefd49ec366ff7064eea1d6fe3500a0cebabd2e5c832c6e8ff3e2b5cdafaf3</citedby><cites>FETCH-LOGICAL-c475t-7c3eefd49ec366ff7064eea1d6fe3500a0cebabd2e5c832c6e8ff3e2b5cdafaf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.it.2021.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33663953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xuan, Wenjing</creatorcontrib><creatorcontrib>Lesniak, Maciej S.</creatorcontrib><creatorcontrib>James, Charles David</creatorcontrib><creatorcontrib>Heimberger, Amy B.</creatorcontrib><creatorcontrib>Chen, Peiwen</creatorcontrib><title>Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms</title><title>Trends in immunology</title><addtitle>Trends Immunol</addtitle><description>Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM–GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM–GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes. Symbiotic glioblastoma–macrophage/microglia (GBM–GAM) interactions reveal synthetic lethality in GBM harboring a deficiency in a specific tumor suppressor gene (e.g., PTEN, NF1, or TP53).Cancer cell-intrinsic activation of oncogenes (e.g., EGFR and CLOCK) can shape a protumor immune response by modulating GAM biology.GBM–GAM symbiosis can contribute to GBM progression by promoting glioma stem cell (GSC) stemness, GBM cell proliferation, survival, and migration as well as by suppressing T cell-mediated immune responses in mouse and patient-derived xenograft (PDX) models.Characterizing GBM–GAM symbiosis might reveal personalized therapeutic targets. For example, LOX and CLOCK inhibition can impair tumor progression and GAM infiltration, specifically in PTEN-deficient and CLOCK-high GBM in mouse and PDX models, respectively.</description><subject>Adult</subject><subject>Apoptosis</subject><subject>Biology</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain tumors</subject><subject>Cell growth</subject><subject>Chemokines</subject><subject>Context</subject><subject>crosstalk</subject><subject>Genes</subject><subject>Genomics</subject><subject>Glioblastoma</subject><subject>Glioblastoma - genetics</subject><subject>heterogeneity</subject><subject>Humans</subject><subject>Immune system</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Macrophages</subject><subject>Microglia</subject><subject>Mutation</subject><subject>Patients</subject><subject>Symbiosis</subject><subject>Tumor Microenvironment</subject><subject>Tumorigenesis</subject><subject>Tumors</subject><issn>1471-4906</issn><issn>1471-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1uFDEUhUcIREKgp0Ij0dDM5PpvfiiQog0kSFlRAAWV5bGvd72asZexNyJd3oE35ElwtMkKkKh8JX_36J5ziuIlgZoAaU43tUs1BUpqoDUAf1QcE96SivcdeXyYoTkqnsW4ASCibdunxRFjTcN6wY6Lb4vgE_5I1Tlu0Rv0qbwYXRhGFVOY1K_bn0ul57BdqxWeLl0eV6NT5eebaXAhulgqb8qzGIN2KqEpl6jXyrs4xefFE6vGiC_u35Pi64f3XxaX1dWni4-Ls6tK81akqtUM0Rreo85HWdtCwxEVMY1FJgAUaBzUYCgK3TGqG-ysZUgHoY2yyrKT4t1ed7sbJjQ6W5jVKLezm9R8I4Ny8u8f79ZyFa5lByB4R7PAm3uBOXzfYUxyclHjOCqPYRclzWnyrut4n9HX_6CbsJt9tiepAME49MAyBXsqpxXjjPZwDAF515vcSJfkXW8SqMy95ZVXf5o4LDwUlYG3ewBzlNcOZxm1Q6_RuBl1kia4_6v_BkDwrGg</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Xuan, Wenjing</creator><creator>Lesniak, Maciej S.</creator><creator>James, Charles David</creator><creator>Heimberger, Amy B.</creator><creator>Chen, Peiwen</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210401</creationdate><title>Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms</title><author>Xuan, Wenjing ; Lesniak, Maciej S. ; James, Charles David ; Heimberger, Amy B. ; Chen, Peiwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-7c3eefd49ec366ff7064eea1d6fe3500a0cebabd2e5c832c6e8ff3e2b5cdafaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Apoptosis</topic><topic>Biology</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain tumors</topic><topic>Cell growth</topic><topic>Chemokines</topic><topic>Context</topic><topic>crosstalk</topic><topic>Genes</topic><topic>Genomics</topic><topic>Glioblastoma</topic><topic>Glioblastoma - genetics</topic><topic>heterogeneity</topic><topic>Humans</topic><topic>Immune system</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Macrophages</topic><topic>Microglia</topic><topic>Mutation</topic><topic>Patients</topic><topic>Symbiosis</topic><topic>Tumor Microenvironment</topic><topic>Tumorigenesis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xuan, Wenjing</creatorcontrib><creatorcontrib>Lesniak, Maciej S.</creatorcontrib><creatorcontrib>James, Charles David</creatorcontrib><creatorcontrib>Heimberger, Amy B.</creatorcontrib><creatorcontrib>Chen, Peiwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xuan, Wenjing</au><au>Lesniak, Maciej S.</au><au>James, Charles David</au><au>Heimberger, Amy B.</au><au>Chen, Peiwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms</atitle><jtitle>Trends in immunology</jtitle><addtitle>Trends Immunol</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>42</volume><issue>4</issue><spage>280</spage><epage>292</epage><pages>280-292</pages><issn>1471-4906</issn><eissn>1471-4981</eissn><abstract>Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM–GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM–GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes. Symbiotic glioblastoma–macrophage/microglia (GBM–GAM) interactions reveal synthetic lethality in GBM harboring a deficiency in a specific tumor suppressor gene (e.g., PTEN, NF1, or TP53).Cancer cell-intrinsic activation of oncogenes (e.g., EGFR and CLOCK) can shape a protumor immune response by modulating GAM biology.GBM–GAM symbiosis can contribute to GBM progression by promoting glioma stem cell (GSC) stemness, GBM cell proliferation, survival, and migration as well as by suppressing T cell-mediated immune responses in mouse and patient-derived xenograft (PDX) models.Characterizing GBM–GAM symbiosis might reveal personalized therapeutic targets. For example, LOX and CLOCK inhibition can impair tumor progression and GAM infiltration, specifically in PTEN-deficient and CLOCK-high GBM in mouse and PDX models, respectively.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33663953</pmid><doi>10.1016/j.it.2021.02.004</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1471-4906
ispartof Trends in immunology, 2021-04, Vol.42 (4), p.280-292
issn 1471-4906
1471-4981
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8005482
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adult
Apoptosis
Biology
Brain cancer
Brain Neoplasms - genetics
Brain tumors
Cell growth
Chemokines
Context
crosstalk
Genes
Genomics
Glioblastoma
Glioblastoma - genetics
heterogeneity
Humans
Immune system
Kinases
Ligands
Macrophages
Microglia
Mutation
Patients
Symbiosis
Tumor Microenvironment
Tumorigenesis
Tumors
title Context-Dependent Glioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Context-Dependent%20Glioblastoma%E2%80%93Macrophage/Microglia%20Symbiosis%20and%20Associated%20Mechanisms&rft.jtitle=Trends%20in%20immunology&rft.au=Xuan,%20Wenjing&rft.date=2021-04-01&rft.volume=42&rft.issue=4&rft.spage=280&rft.epage=292&rft.pages=280-292&rft.issn=1471-4906&rft.eissn=1471-4981&rft_id=info:doi/10.1016/j.it.2021.02.004&rft_dat=%3Cproquest_pubme%3E2505340903%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505340903&rft_id=info:pmid/33663953&rft_els_id=S1471490621000284&rfr_iscdi=true