Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward

Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity. Age, gender, pre-morbid modifie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical medicine (London, England) England), 2021-03, Vol.21 (2), p.e186-e191
Hauptverfasser: de Berker, Henry, de Berker, Archy, Aung, Htin, Duarte, Pedro, Mohammed, Salman, Shetty, Hamsaraj, Hughes, Tom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e191
container_issue 2
container_start_page e186
container_title Clinical medicine (London, England)
container_volume 21
creator de Berker, Henry
de Berker, Archy
Aung, Htin
Duarte, Pedro
Mohammed, Salman
Shetty, Hamsaraj
Hughes, Tom
description Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity. Age, gender, pre-morbid modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) were gathered prospectively on an acute stroke unit from 1,142 consecutive patients. A multiclass random forest classifier was used to train and validate a model to predict discharge destination. Used alone, the mRS is the strongest predictor of discharge destination. The NIHSS is only predictive when combined with our other variables. The accuracy of the final model was 70.4% overall with a positive predictive value (PPV) and sensitivity of 0.88 and 0.78 for home as the destination, 0.68 and 0.88 for continued inpatient care, 0.7 and 0.53 for community hospital, and 0.5 and 0.18 for death, respectively. Pre-stroke disability rather than stroke severity is the strongest predictor of discharge destination, but in combination with other routinely collected data, both can be used as an adjunct by the multidisciplinary team to predict discharge destination in patients with acute stroke.
doi_str_mv 10.7861/clinmed.2020-0834
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8002797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470211824033463</els_id><sourcerecordid>2561108722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-d407ab07027a56ee3145fb9e38b6e8e8eec487910c7343c8dff7d8769567cc943</originalsourceid><addsrcrecordid>eNp9UctKBDEQDKL4_gAvMuB5NJlkJhkEQcQXCHrQc8gkPZp1d7J2siv-vVl3Fb1IDgmdquruKkIOGD2WqmEnduyHCbjjila0pIqLNbLNhOSlUC1f_3rTsmJMbZGdGEeUslq0zSbZ4lw2FVf1Nhk9IJQxYXiFwvloOj_26aMwgytW1QhzwK9aLKYIztsUMBahX-Dti8HnzISY_GCSD0PRY5hkfmHsLMG3yLtBt0c2ejOOsL-6d8nT1eXjxU15d399e3F-V1oh21Q6QaXpqKSVNHUDwJmo-64FrroGVD5ghZIto1Zywa1yfS-dkk1bN9LaVvBdcrbUnc667I6FIaEZ6yn6icEPHYzXf38G_6Kfw1wrmnu2MgscrQQwvM3yanoUZjjkmXVVN4xRJasqo9gSZTHEiND_dGBUL-LRq3j0Ih69iCdzDn-P9sP4ziMDTpcAyAbNPaCO1sNgs-0INmkX_D_ynwfupF4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561108722</pqid></control><display><type>article</type><title>Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>de Berker, Henry ; de Berker, Archy ; Aung, Htin ; Duarte, Pedro ; Mohammed, Salman ; Shetty, Hamsaraj ; Hughes, Tom</creator><creatorcontrib>de Berker, Henry ; de Berker, Archy ; Aung, Htin ; Duarte, Pedro ; Mohammed, Salman ; Shetty, Hamsaraj ; Hughes, Tom</creatorcontrib><description>Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity. Age, gender, pre-morbid modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) were gathered prospectively on an acute stroke unit from 1,142 consecutive patients. A multiclass random forest classifier was used to train and validate a model to predict discharge destination. Used alone, the mRS is the strongest predictor of discharge destination. The NIHSS is only predictive when combined with our other variables. The accuracy of the final model was 70.4% overall with a positive predictive value (PPV) and sensitivity of 0.88 and 0.78 for home as the destination, 0.68 and 0.88 for continued inpatient care, 0.7 and 0.53 for community hospital, and 0.5 and 0.18 for death, respectively. Pre-stroke disability rather than stroke severity is the strongest predictor of discharge destination, but in combination with other routinely collected data, both can be used as an adjunct by the multidisciplinary team to predict discharge destination in patients with acute stroke.</description><identifier>ISSN: 1470-2118</identifier><identifier>EISSN: 1473-4893</identifier><identifier>DOI: 10.7861/clinmed.2020-0834</identifier><identifier>PMID: 33762385</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accuracy ; acute stroke ; Age ; computer modelling ; disability ; discharge destination ; Gender ; Hospitals ; Humans ; Length of stay ; Machine learning ; Mortality ; Original Research ; Patient Discharge ; Patients ; Predictive Value of Tests ; Rehabilitation ; Stroke ; Stroke Rehabilitation</subject><ispartof>Clinical medicine (London, England), 2021-03, Vol.21 (2), p.e186-e191</ispartof><rights>2021 © 2021 THE AUTHORS. Published by Elsevier Limited on behalf of the Royal College of Physicians.</rights><rights>Royal College of Physicians 2021. All rights reserved.</rights><rights>Copyright Royal College of Physicians Mar 2021</rights><rights>Royal College of Physicians 2021. All rights reserved. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-d407ab07027a56ee3145fb9e38b6e8e8eec487910c7343c8dff7d8769567cc943</citedby><cites>FETCH-LOGICAL-c479t-d407ab07027a56ee3145fb9e38b6e8e8eec487910c7343c8dff7d8769567cc943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002797/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002797/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33762385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Berker, Henry</creatorcontrib><creatorcontrib>de Berker, Archy</creatorcontrib><creatorcontrib>Aung, Htin</creatorcontrib><creatorcontrib>Duarte, Pedro</creatorcontrib><creatorcontrib>Mohammed, Salman</creatorcontrib><creatorcontrib>Shetty, Hamsaraj</creatorcontrib><creatorcontrib>Hughes, Tom</creatorcontrib><title>Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward</title><title>Clinical medicine (London, England)</title><addtitle>Clin Med (Lond)</addtitle><description>Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity. Age, gender, pre-morbid modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) were gathered prospectively on an acute stroke unit from 1,142 consecutive patients. A multiclass random forest classifier was used to train and validate a model to predict discharge destination. Used alone, the mRS is the strongest predictor of discharge destination. The NIHSS is only predictive when combined with our other variables. The accuracy of the final model was 70.4% overall with a positive predictive value (PPV) and sensitivity of 0.88 and 0.78 for home as the destination, 0.68 and 0.88 for continued inpatient care, 0.7 and 0.53 for community hospital, and 0.5 and 0.18 for death, respectively. Pre-stroke disability rather than stroke severity is the strongest predictor of discharge destination, but in combination with other routinely collected data, both can be used as an adjunct by the multidisciplinary team to predict discharge destination in patients with acute stroke.</description><subject>Accuracy</subject><subject>acute stroke</subject><subject>Age</subject><subject>computer modelling</subject><subject>disability</subject><subject>discharge destination</subject><subject>Gender</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Length of stay</subject><subject>Machine learning</subject><subject>Mortality</subject><subject>Original Research</subject><subject>Patient Discharge</subject><subject>Patients</subject><subject>Predictive Value of Tests</subject><subject>Rehabilitation</subject><subject>Stroke</subject><subject>Stroke Rehabilitation</subject><issn>1470-2118</issn><issn>1473-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9UctKBDEQDKL4_gAvMuB5NJlkJhkEQcQXCHrQc8gkPZp1d7J2siv-vVl3Fb1IDgmdquruKkIOGD2WqmEnduyHCbjjila0pIqLNbLNhOSlUC1f_3rTsmJMbZGdGEeUslq0zSbZ4lw2FVf1Nhk9IJQxYXiFwvloOj_26aMwgytW1QhzwK9aLKYIztsUMBahX-Dti8HnzISY_GCSD0PRY5hkfmHsLMG3yLtBt0c2ejOOsL-6d8nT1eXjxU15d399e3F-V1oh21Q6QaXpqKSVNHUDwJmo-64FrroGVD5ghZIto1Zywa1yfS-dkk1bN9LaVvBdcrbUnc667I6FIaEZ6yn6icEPHYzXf38G_6Kfw1wrmnu2MgscrQQwvM3yanoUZjjkmXVVN4xRJasqo9gSZTHEiND_dGBUL-LRq3j0Ih69iCdzDn-P9sP4ziMDTpcAyAbNPaCO1sNgs-0INmkX_D_ynwfupF4</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>de Berker, Henry</creator><creator>de Berker, Archy</creator><creator>Aung, Htin</creator><creator>Duarte, Pedro</creator><creator>Mohammed, Salman</creator><creator>Shetty, Hamsaraj</creator><creator>Hughes, Tom</creator><general>Elsevier Ltd</general><general>Royal College of Physicians</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>202103</creationdate><title>Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward</title><author>de Berker, Henry ; de Berker, Archy ; Aung, Htin ; Duarte, Pedro ; Mohammed, Salman ; Shetty, Hamsaraj ; Hughes, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-d407ab07027a56ee3145fb9e38b6e8e8eec487910c7343c8dff7d8769567cc943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>acute stroke</topic><topic>Age</topic><topic>computer modelling</topic><topic>disability</topic><topic>discharge destination</topic><topic>Gender</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Length of stay</topic><topic>Machine learning</topic><topic>Mortality</topic><topic>Original Research</topic><topic>Patient Discharge</topic><topic>Patients</topic><topic>Predictive Value of Tests</topic><topic>Rehabilitation</topic><topic>Stroke</topic><topic>Stroke Rehabilitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Berker, Henry</creatorcontrib><creatorcontrib>de Berker, Archy</creatorcontrib><creatorcontrib>Aung, Htin</creatorcontrib><creatorcontrib>Duarte, Pedro</creatorcontrib><creatorcontrib>Mohammed, Salman</creatorcontrib><creatorcontrib>Shetty, Hamsaraj</creatorcontrib><creatorcontrib>Hughes, Tom</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>UK &amp; Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Clinical medicine (London, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Berker, Henry</au><au>de Berker, Archy</au><au>Aung, Htin</au><au>Duarte, Pedro</au><au>Mohammed, Salman</au><au>Shetty, Hamsaraj</au><au>Hughes, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward</atitle><jtitle>Clinical medicine (London, England)</jtitle><addtitle>Clin Med (Lond)</addtitle><date>2021-03</date><risdate>2021</risdate><volume>21</volume><issue>2</issue><spage>e186</spage><epage>e191</epage><pages>e186-e191</pages><issn>1470-2118</issn><eissn>1473-4893</eissn><abstract>Reliable prediction of discharge destination in acute stroke informs discharge planning and can determine the expectations of patients and carers. There is no existing model that does this using routinely collected indices of pre-morbid disability and stroke severity. Age, gender, pre-morbid modified Rankin Scale (mRS) and National Institutes of Health Stroke Scale (NIHSS) were gathered prospectively on an acute stroke unit from 1,142 consecutive patients. A multiclass random forest classifier was used to train and validate a model to predict discharge destination. Used alone, the mRS is the strongest predictor of discharge destination. The NIHSS is only predictive when combined with our other variables. The accuracy of the final model was 70.4% overall with a positive predictive value (PPV) and sensitivity of 0.88 and 0.78 for home as the destination, 0.68 and 0.88 for continued inpatient care, 0.7 and 0.53 for community hospital, and 0.5 and 0.18 for death, respectively. Pre-stroke disability rather than stroke severity is the strongest predictor of discharge destination, but in combination with other routinely collected data, both can be used as an adjunct by the multidisciplinary team to predict discharge destination in patients with acute stroke.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>33762385</pmid><doi>10.7861/clinmed.2020-0834</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-2118
ispartof Clinical medicine (London, England), 2021-03, Vol.21 (2), p.e186-e191
issn 1470-2118
1473-4893
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8002797
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Accuracy
acute stroke
Age
computer modelling
disability
discharge destination
Gender
Hospitals
Humans
Length of stay
Machine learning
Mortality
Original Research
Patient Discharge
Patients
Predictive Value of Tests
Rehabilitation
Stroke
Stroke Rehabilitation
title Pre-stroke disability and stroke severity as predictors of discharge destination from an acute stroke ward
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-stroke%20disability%20and%20stroke%20severity%20as%20predictors%20of%20discharge%20destination%20from%20an%20acute%20stroke%20ward&rft.jtitle=Clinical%20medicine%20(London,%20England)&rft.au=de%20Berker,%20Henry&rft.date=2021-03&rft.volume=21&rft.issue=2&rft.spage=e186&rft.epage=e191&rft.pages=e186-e191&rft.issn=1470-2118&rft.eissn=1473-4893&rft_id=info:doi/10.7861/clinmed.2020-0834&rft_dat=%3Cproquest_pubme%3E2561108722%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561108722&rft_id=info:pmid/33762385&rft_els_id=S1470211824033463&rfr_iscdi=true