3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics

A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-03, Vol.22 (6), p.2925
Hauptverfasser: Häussling, Victor, Aspera-Werz, Romina H, Rinderknecht, Helen, Springer, Fabian, Arnscheidt, Christian, Menger, Maximilian M, Histing, Tina, Nussler, Andreas K, Ehnert, Sabrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 2925
container_title International journal of molecular sciences
container_volume 22
creator Häussling, Victor
Aspera-Werz, Romina H
Rinderknecht, Helen
Springer, Fabian
Arnscheidt, Christian
Menger, Maximilian M
Histing, Tina
Nussler, Andreas K
Ehnert, Sabrina
description A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.
doi_str_mv 10.3390/ijms22062925
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8002142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2508566944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e729c8cd067008d76e1c46f0b32bfa78eedf613447c0e33634c4b0140b13a6423</originalsourceid><addsrcrecordid>eNpdkc1v1DAQxS0EoqVw44wsceHAtuOPOMkFqez2Y6VWSKhwtRxnQr1K7K3tVOp_j5eWauE01ryfnub5EfKewbEQLZy4zZQ4B8VbXr0gh0xyvgBQ9cu99wF5k9IGgAteta_JgRANVI0Qh8SLFT3z9y4GP6HPdJ3od7ybXcSerj396XIMNAe6win4lKPJSE_HjDv9a_BIrzGbLowuTXR5a6KxRXMpO0uHEOnNwxYppytnOiy79Ja8GsyY8N3TPCI_zs9ulpeLq28X6-Xp1cJKxvMCa97axvbldICmrxUyK9UAneDdYOoGsR8UE1LWFlAIJaSVHTAJHRNGSS6OyJdH3-3cTdjbEi2aUW-jm0x80ME4_a_i3a3-Fe51Uz6J_TH49GQQw92MKevJJYvjaDyGOWleQVMp1UpZ0I__oZswR1_i7SheMWCsLdTnR8rGkFLE4fkYBnpXpN4vsuAf9gM8w3-bE78BIuaZTg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502510119</pqid></control><display><type>article</type><title>3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Häussling, Victor ; Aspera-Werz, Romina H ; Rinderknecht, Helen ; Springer, Fabian ; Arnscheidt, Christian ; Menger, Maximilian M ; Histing, Tina ; Nussler, Andreas K ; Ehnert, Sabrina</creator><creatorcontrib>Häussling, Victor ; Aspera-Werz, Romina H ; Rinderknecht, Helen ; Springer, Fabian ; Arnscheidt, Christian ; Menger, Maximilian M ; Histing, Tina ; Nussler, Andreas K ; Ehnert, Sabrina</creatorcontrib><description>A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms22062925</identifier><identifier>PMID: 33805833</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alkaline Phosphatase - genetics ; Alkaline Phosphatase - metabolism ; Amputation ; Biomedical materials ; Bone and Bones - metabolism ; Bone and Bones - pathology ; Bone diseases ; Bone healing ; Bone Resorption - genetics ; Bone Resorption - metabolism ; Bone Resorption - pathology ; Bone turnover ; Calcification, Physiologic - genetics ; Carbonic Anhydrase II - genetics ; Carbonic Anhydrase II - metabolism ; Cathepsin K - genetics ; Cathepsin K - metabolism ; Cell Differentiation ; Cell Line, Tumor ; Coculture Techniques ; Collagen ; Deoxyribonucleic acid ; Diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - pathology ; DNA ; Drug screening ; Fractures ; Gene Expression Regulation ; Glucose ; Humans ; Insulin ; Metabolic Networks and Pathways - genetics ; Metabolism ; Mineralization ; Models, Biological ; Nonunion ; Osteoblasts ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteoclasts ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Osteoprotegerin - genetics ; Osteoprotegerin - metabolism ; RANK Ligand - genetics ; RANK Ligand - metabolism ; Risk analysis ; Risk factors ; Stability ; Tartrate-Resistant Acid Phosphatase - genetics ; Tartrate-Resistant Acid Phosphatase - metabolism ; THP-1 Cells ; Tissue engineering ; Tissue Scaffolds</subject><ispartof>International journal of molecular sciences, 2021-03, Vol.22 (6), p.2925</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e729c8cd067008d76e1c46f0b32bfa78eedf613447c0e33634c4b0140b13a6423</citedby><cites>FETCH-LOGICAL-c412t-e729c8cd067008d76e1c46f0b32bfa78eedf613447c0e33634c4b0140b13a6423</cites><orcidid>0000-0002-9311-0131 ; 0000-0002-5160-2111 ; 0000-0003-4347-1702 ; 0000-0002-6666-6791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002142/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8002142/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33805833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Häussling, Victor</creatorcontrib><creatorcontrib>Aspera-Werz, Romina H</creatorcontrib><creatorcontrib>Rinderknecht, Helen</creatorcontrib><creatorcontrib>Springer, Fabian</creatorcontrib><creatorcontrib>Arnscheidt, Christian</creatorcontrib><creatorcontrib>Menger, Maximilian M</creatorcontrib><creatorcontrib>Histing, Tina</creatorcontrib><creatorcontrib>Nussler, Andreas K</creatorcontrib><creatorcontrib>Ehnert, Sabrina</creatorcontrib><title>3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.</description><subject>Alkaline Phosphatase - genetics</subject><subject>Alkaline Phosphatase - metabolism</subject><subject>Amputation</subject><subject>Biomedical materials</subject><subject>Bone and Bones - metabolism</subject><subject>Bone and Bones - pathology</subject><subject>Bone diseases</subject><subject>Bone healing</subject><subject>Bone Resorption - genetics</subject><subject>Bone Resorption - metabolism</subject><subject>Bone Resorption - pathology</subject><subject>Bone turnover</subject><subject>Calcification, Physiologic - genetics</subject><subject>Carbonic Anhydrase II - genetics</subject><subject>Carbonic Anhydrase II - metabolism</subject><subject>Cathepsin K - genetics</subject><subject>Cathepsin K - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Line, Tumor</subject><subject>Coculture Techniques</subject><subject>Collagen</subject><subject>Deoxyribonucleic acid</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>DNA</subject><subject>Drug screening</subject><subject>Fractures</subject><subject>Gene Expression Regulation</subject><subject>Glucose</subject><subject>Humans</subject><subject>Insulin</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Metabolism</subject><subject>Mineralization</subject><subject>Models, Biological</subject><subject>Nonunion</subject><subject>Osteoblasts</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteoclasts</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Osteoprotegerin - genetics</subject><subject>Osteoprotegerin - metabolism</subject><subject>RANK Ligand - genetics</subject><subject>RANK Ligand - metabolism</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Stability</subject><subject>Tartrate-Resistant Acid Phosphatase - genetics</subject><subject>Tartrate-Resistant Acid Phosphatase - metabolism</subject><subject>THP-1 Cells</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkc1v1DAQxS0EoqVw44wsceHAtuOPOMkFqez2Y6VWSKhwtRxnQr1K7K3tVOp_j5eWauE01ryfnub5EfKewbEQLZy4zZQ4B8VbXr0gh0xyvgBQ9cu99wF5k9IGgAteta_JgRANVI0Qh8SLFT3z9y4GP6HPdJ3od7ybXcSerj396XIMNAe6win4lKPJSE_HjDv9a_BIrzGbLowuTXR5a6KxRXMpO0uHEOnNwxYppytnOiy79Ja8GsyY8N3TPCI_zs9ulpeLq28X6-Xp1cJKxvMCa97axvbldICmrxUyK9UAneDdYOoGsR8UE1LWFlAIJaSVHTAJHRNGSS6OyJdH3-3cTdjbEi2aUW-jm0x80ME4_a_i3a3-Fe51Uz6J_TH49GQQw92MKevJJYvjaDyGOWleQVMp1UpZ0I__oZswR1_i7SheMWCsLdTnR8rGkFLE4fkYBnpXpN4vsuAf9gM8w3-bE78BIuaZTg</recordid><startdate>20210313</startdate><enddate>20210313</enddate><creator>Häussling, Victor</creator><creator>Aspera-Werz, Romina H</creator><creator>Rinderknecht, Helen</creator><creator>Springer, Fabian</creator><creator>Arnscheidt, Christian</creator><creator>Menger, Maximilian M</creator><creator>Histing, Tina</creator><creator>Nussler, Andreas K</creator><creator>Ehnert, Sabrina</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9311-0131</orcidid><orcidid>https://orcid.org/0000-0002-5160-2111</orcidid><orcidid>https://orcid.org/0000-0003-4347-1702</orcidid><orcidid>https://orcid.org/0000-0002-6666-6791</orcidid></search><sort><creationdate>20210313</creationdate><title>3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics</title><author>Häussling, Victor ; Aspera-Werz, Romina H ; Rinderknecht, Helen ; Springer, Fabian ; Arnscheidt, Christian ; Menger, Maximilian M ; Histing, Tina ; Nussler, Andreas K ; Ehnert, Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e729c8cd067008d76e1c46f0b32bfa78eedf613447c0e33634c4b0140b13a6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alkaline Phosphatase - genetics</topic><topic>Alkaline Phosphatase - metabolism</topic><topic>Amputation</topic><topic>Biomedical materials</topic><topic>Bone and Bones - metabolism</topic><topic>Bone and Bones - pathology</topic><topic>Bone diseases</topic><topic>Bone healing</topic><topic>Bone Resorption - genetics</topic><topic>Bone Resorption - metabolism</topic><topic>Bone Resorption - pathology</topic><topic>Bone turnover</topic><topic>Calcification, Physiologic - genetics</topic><topic>Carbonic Anhydrase II - genetics</topic><topic>Carbonic Anhydrase II - metabolism</topic><topic>Cathepsin K - genetics</topic><topic>Cathepsin K - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Line, Tumor</topic><topic>Coculture Techniques</topic><topic>Collagen</topic><topic>Deoxyribonucleic acid</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>DNA</topic><topic>Drug screening</topic><topic>Fractures</topic><topic>Gene Expression Regulation</topic><topic>Glucose</topic><topic>Humans</topic><topic>Insulin</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Metabolism</topic><topic>Mineralization</topic><topic>Models, Biological</topic><topic>Nonunion</topic><topic>Osteoblasts</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteoclasts</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Osteoprotegerin - genetics</topic><topic>Osteoprotegerin - metabolism</topic><topic>RANK Ligand - genetics</topic><topic>RANK Ligand - metabolism</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Stability</topic><topic>Tartrate-Resistant Acid Phosphatase - genetics</topic><topic>Tartrate-Resistant Acid Phosphatase - metabolism</topic><topic>THP-1 Cells</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Häussling, Victor</creatorcontrib><creatorcontrib>Aspera-Werz, Romina H</creatorcontrib><creatorcontrib>Rinderknecht, Helen</creatorcontrib><creatorcontrib>Springer, Fabian</creatorcontrib><creatorcontrib>Arnscheidt, Christian</creatorcontrib><creatorcontrib>Menger, Maximilian M</creatorcontrib><creatorcontrib>Histing, Tina</creatorcontrib><creatorcontrib>Nussler, Andreas K</creatorcontrib><creatorcontrib>Ehnert, Sabrina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Häussling, Victor</au><au>Aspera-Werz, Romina H</au><au>Rinderknecht, Helen</au><au>Springer, Fabian</au><au>Arnscheidt, Christian</au><au>Menger, Maximilian M</au><au>Histing, Tina</au><au>Nussler, Andreas K</au><au>Ehnert, Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2021-03-13</date><risdate>2021</risdate><volume>22</volume><issue>6</issue><spage>2925</spage><pages>2925-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>A large British study, with almost 3000 patients, identified diabetes as main risk factor for delayed and nonunion fracture healing, the treatment of which causes large costs for the health system. In the past years, much progress has been made to treat common complications in diabetics. However, there is still a lack of advanced strategies to treat diabetic bone diseases. To develop such therapeutic strategies, mechanisms leading to massive bone alterations in diabetics have to be well understood. We herein describe an in vitro model displaying bone metabolism frequently observed in diabetics. The model is based on osteoblastic SaOS-2 cells, which in direct coculture, stimulate THP-1 cells to form osteoclasts. While in conventional 2D cocultures formation of mineralized matrix is decreased under pre-/diabetic conditions, formation of mineralized matrix is increased in 3D cocultures. Furthermore, we demonstrate a matrix stability of the 3D carrier that is decreased under pre-/diabetic conditions, resembling the in vivo situation in type 2 diabetics. In summary, our results show that a 3D environment is required in this in vitro model to mimic alterations in bone metabolism characteristic for pre-/diabetes. The ability to measure both osteoblast and osteoclast function, and their effect on mineralization and stability of the 3D carrier offers the possibility to use this model also for other purposes, e.g., drug screenings.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33805833</pmid><doi>10.3390/ijms22062925</doi><orcidid>https://orcid.org/0000-0002-9311-0131</orcidid><orcidid>https://orcid.org/0000-0002-5160-2111</orcidid><orcidid>https://orcid.org/0000-0003-4347-1702</orcidid><orcidid>https://orcid.org/0000-0002-6666-6791</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2021-03, Vol.22 (6), p.2925
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8002142
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Alkaline Phosphatase - genetics
Alkaline Phosphatase - metabolism
Amputation
Biomedical materials
Bone and Bones - metabolism
Bone and Bones - pathology
Bone diseases
Bone healing
Bone Resorption - genetics
Bone Resorption - metabolism
Bone Resorption - pathology
Bone turnover
Calcification, Physiologic - genetics
Carbonic Anhydrase II - genetics
Carbonic Anhydrase II - metabolism
Cathepsin K - genetics
Cathepsin K - metabolism
Cell Differentiation
Cell Line, Tumor
Coculture Techniques
Collagen
Deoxyribonucleic acid
Diabetes
Diabetes mellitus
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - pathology
DNA
Drug screening
Fractures
Gene Expression Regulation
Glucose
Humans
Insulin
Metabolic Networks and Pathways - genetics
Metabolism
Mineralization
Models, Biological
Nonunion
Osteoblasts
Osteoblasts - metabolism
Osteoblasts - pathology
Osteoclasts
Osteoclasts - metabolism
Osteoclasts - pathology
Osteoprotegerin - genetics
Osteoprotegerin - metabolism
RANK Ligand - genetics
RANK Ligand - metabolism
Risk analysis
Risk factors
Stability
Tartrate-Resistant Acid Phosphatase - genetics
Tartrate-Resistant Acid Phosphatase - metabolism
THP-1 Cells
Tissue engineering
Tissue Scaffolds
title 3D Environment Is Required In Vitro to Demonstrate Altered Bone Metabolism Characteristic for Type 2 Diabetics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Environment%20Is%20Required%20In%20Vitro%20to%20Demonstrate%20Altered%20Bone%20Metabolism%20Characteristic%20for%20Type%202%20Diabetics&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=H%C3%A4ussling,%20Victor&rft.date=2021-03-13&rft.volume=22&rft.issue=6&rft.spage=2925&rft.pages=2925-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms22062925&rft_dat=%3Cproquest_pubme%3E2508566944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502510119&rft_id=info:pmid/33805833&rfr_iscdi=true