Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions

Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanomaterials (Basel, Switzerland) Switzerland), 2021-03, Vol.11 (3), p.641
Hauptverfasser: Zhou, Dahua, Yu, Leyong, Zhu, Peng, Zhao, Hongquan, Feng, Shuanglong, Shen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 641
container_title Nanomaterials (Basel, Switzerland)
container_volume 11
creator Zhou, Dahua
Yu, Leyong
Zhu, Peng
Zhao, Hongquan
Feng, Shuanglong
Shen, Jun
description Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes' transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes' collecting material and carriers' transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 10 A/W and 7.2 × 10 Jones, respectively. To understand the photoconductive mechanism, the perovskite's passivation and the graphene photogating effect are proposed to contribute to the device's performance. This study provides new routes for the application of perovskite film in photodetection.
doi_str_mv 10.3390/nano11030641
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c71dbdb231240b9ad4a0873e259f988</doaj_id><sourcerecordid>2508576455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c85a28aa8e6ac54751fb882a03662379646dae29e41c14a1d189e10ccfe98a553</originalsourceid><addsrcrecordid>eNpdkk1vEzEQhi0EolXpjTNaiQsHQv25a1-QoIK2UhCVgAsXa9Y72zhs7GB7K_HvcZpSpfgy1vidR-N3hpCXjL4TwtCzACEyRgVtJXtCjjntzEIaw54e3I_Iac5rWo9hQivxnBwJoWlXS47JzyUUTDA130qaXZkTDs31KpZYEoTsc4mp-Qi5ZmNovmCO2cWtd81Fgu0KA55dY4q3-Zcv2FxiRcX1HFzxMeQX5NkIU8bT-3hCfnz-9P38crH8enF1_mG5cLLTZeG0Aq4BNLbglOwUG3utOVDRtlx0ppXtAMgNSuaYBDYwbZBR50Y0GpQSJ-Rqzx0irO02-Q2kPzaCt3eJmG4spOLdhFa5jg390HPBuKS9gUEC1Z1ArsxotK6s93vWdu43ODgM1YfpEfTxS_ArexNvrd7Za2gFvLkHpPh7xlzsxmeH0wQB45wtV1Srav1d36__k67jnEK1yvI6N0Gl1jvg273KpZhzwvGhGUbtbgfs4Q5U-avDDzyI_01c_AUfYK3y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499304880</pqid></control><display><type>article</type><title>Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Zhou, Dahua ; Yu, Leyong ; Zhu, Peng ; Zhao, Hongquan ; Feng, Shuanglong ; Shen, Jun</creator><creatorcontrib>Zhou, Dahua ; Yu, Leyong ; Zhu, Peng ; Zhao, Hongquan ; Feng, Shuanglong ; Shen, Jun</creatorcontrib><description>Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes' transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes' collecting material and carriers' transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 10 A/W and 7.2 × 10 Jones, respectively. To understand the photoconductive mechanism, the perovskite's passivation and the graphene photogating effect are proposed to contribute to the device's performance. This study provides new routes for the application of perovskite film in photodetection.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano11030641</identifier><identifier>PMID: 33807641</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Annealing ; Charge transfer ; Current carriers ; Electrodes ; Graphene ; graphene nanowalls ; Heterojunctions ; Lasers ; Luminescence quenching ; Nanowires ; Optical properties ; Perovskites ; perovskites crystal ; phototransistor ; Photovoltaic cells ; Quantum dots ; Quantum efficiency ; Radio frequency plasma ; Scanning electron microscopy ; Solar cells</subject><ispartof>Nanomaterials (Basel, Switzerland), 2021-03, Vol.11 (3), p.641</ispartof><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c85a28aa8e6ac54751fb882a03662379646dae29e41c14a1d189e10ccfe98a553</citedby><cites>FETCH-LOGICAL-c478t-c85a28aa8e6ac54751fb882a03662379646dae29e41c14a1d189e10ccfe98a553</cites><orcidid>0000-0002-9764-8529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000990/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8000990/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33807641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Dahua</creatorcontrib><creatorcontrib>Yu, Leyong</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Zhao, Hongquan</creatorcontrib><creatorcontrib>Feng, Shuanglong</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><title>Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes' transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes' collecting material and carriers' transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 10 A/W and 7.2 × 10 Jones, respectively. To understand the photoconductive mechanism, the perovskite's passivation and the graphene photogating effect are proposed to contribute to the device's performance. This study provides new routes for the application of perovskite film in photodetection.</description><subject>Annealing</subject><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>graphene nanowalls</subject><subject>Heterojunctions</subject><subject>Lasers</subject><subject>Luminescence quenching</subject><subject>Nanowires</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>perovskites crystal</subject><subject>phototransistor</subject><subject>Photovoltaic cells</subject><subject>Quantum dots</subject><subject>Quantum efficiency</subject><subject>Radio frequency plasma</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkk1vEzEQhi0EolXpjTNaiQsHQv25a1-QoIK2UhCVgAsXa9Y72zhs7GB7K_HvcZpSpfgy1vidR-N3hpCXjL4TwtCzACEyRgVtJXtCjjntzEIaw54e3I_Iac5rWo9hQivxnBwJoWlXS47JzyUUTDA130qaXZkTDs31KpZYEoTsc4mp-Qi5ZmNovmCO2cWtd81Fgu0KA55dY4q3-Zcv2FxiRcX1HFzxMeQX5NkIU8bT-3hCfnz-9P38crH8enF1_mG5cLLTZeG0Aq4BNLbglOwUG3utOVDRtlx0ppXtAMgNSuaYBDYwbZBR50Y0GpQSJ-Rqzx0irO02-Q2kPzaCt3eJmG4spOLdhFa5jg390HPBuKS9gUEC1Z1ArsxotK6s93vWdu43ODgM1YfpEfTxS_ArexNvrd7Za2gFvLkHpPh7xlzsxmeH0wQB45wtV1Srav1d36__k67jnEK1yvI6N0Gl1jvg273KpZhzwvGhGUbtbgfs4Q5U-avDDzyI_01c_AUfYK3y</recordid><startdate>20210305</startdate><enddate>20210305</enddate><creator>Zhou, Dahua</creator><creator>Yu, Leyong</creator><creator>Zhu, Peng</creator><creator>Zhao, Hongquan</creator><creator>Feng, Shuanglong</creator><creator>Shen, Jun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9764-8529</orcidid></search><sort><creationdate>20210305</creationdate><title>Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions</title><author>Zhou, Dahua ; Yu, Leyong ; Zhu, Peng ; Zhao, Hongquan ; Feng, Shuanglong ; Shen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c85a28aa8e6ac54751fb882a03662379646dae29e41c14a1d189e10ccfe98a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Annealing</topic><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>graphene nanowalls</topic><topic>Heterojunctions</topic><topic>Lasers</topic><topic>Luminescence quenching</topic><topic>Nanowires</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>perovskites crystal</topic><topic>phototransistor</topic><topic>Photovoltaic cells</topic><topic>Quantum dots</topic><topic>Quantum efficiency</topic><topic>Radio frequency plasma</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Dahua</creatorcontrib><creatorcontrib>Yu, Leyong</creatorcontrib><creatorcontrib>Zhu, Peng</creatorcontrib><creatorcontrib>Zhao, Hongquan</creatorcontrib><creatorcontrib>Feng, Shuanglong</creatorcontrib><creatorcontrib>Shen, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Dahua</au><au>Yu, Leyong</au><au>Zhu, Peng</au><au>Zhao, Hongquan</au><au>Feng, Shuanglong</au><au>Shen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2021-03-05</date><risdate>2021</risdate><volume>11</volume><issue>3</issue><spage>641</spage><pages>641-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Due to their outstanding optical properties and superior charge carrier mobilities, organometal halide perovskites have been widely investigated in photodetection and solar cell areas. In perovskites photodetection devices, their high optical absorption and excellent quantum efficiency contribute to the responsivity, even the specific detectivity. In this work, we developed a lateral phototransistor based on mesoscopic graphene/perovskite heterojunctions. Graphene nanowall shows a porous structure, and the spaces between graphene nanowall are much appropriated for perovskite crystalline to mount in. Hot carriers are excited in perovskite, which is followed by the holes' transfer to the graphene layer through the interfacial efficiently. Therefore, graphene plays the role of holes' collecting material and carriers' transporting channel. This charge transfer process is also verified by the luminescence spectra. We used the hybrid film to build phototransistor, which performed a high responsivity and specific detectivity of 2.0 × 10 A/W and 7.2 × 10 Jones, respectively. To understand the photoconductive mechanism, the perovskite's passivation and the graphene photogating effect are proposed to contribute to the device's performance. This study provides new routes for the application of perovskite film in photodetection.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33807641</pmid><doi>10.3390/nano11030641</doi><orcidid>https://orcid.org/0000-0002-9764-8529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2021-03, Vol.11 (3), p.641
issn 2079-4991
2079-4991
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_8000990
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Annealing
Charge transfer
Current carriers
Electrodes
Graphene
graphene nanowalls
Heterojunctions
Lasers
Luminescence quenching
Nanowires
Optical properties
Perovskites
perovskites crystal
phototransistor
Photovoltaic cells
Quantum dots
Quantum efficiency
Radio frequency plasma
Scanning electron microscopy
Solar cells
title Lateral Structured Phototransistor Based on Mesoscopic Graphene/Perovskite Heterojunctions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20Structured%20Phototransistor%20Based%20on%20Mesoscopic%20Graphene/Perovskite%20Heterojunctions&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Zhou,%20Dahua&rft.date=2021-03-05&rft.volume=11&rft.issue=3&rft.spage=641&rft.pages=641-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano11030641&rft_dat=%3Cproquest_doaj_%3E2508576455%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499304880&rft_id=info:pmid/33807641&rft_doaj_id=oai_doaj_org_article_5c71dbdb231240b9ad4a0873e259f988&rfr_iscdi=true