Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake
TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance rema...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2021-03, Vol.3 (3), p.378-393 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 3 |
container_start_page | 378 |
container_title | Nature metabolism |
container_volume | 3 |
creator | Habtemichael, Estifanos N. Li, Don T. Camporez, João Paulo Westergaard, Xavier O. Sales, Chloe I. Liu, Xinran López-Giráldez, Francesc DeVries, Stephen G. Li, Hanbing Ruiz, Diana M. Wang, Kenny Y. Sayal, Bhavesh S. González Zapata, Sofia Dann, Pamela Brown, Stacey N. Hirabara, Sandro Vatner, Daniel F. Goedeke, Leigh Philbrick, William Shulman, Gerald I. Bogan, Jonathan S. |
description | TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific
Tug
(
Aspscr1
)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure. |
doi_str_mv | 10.1038/s42255-021-00359-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499388480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha2qCBDlD7CosuwmrZ-JvalUoZYiIXUDOyTLcSbB4BunfsC9_75uL0V009WMNN-cGZ2D0BnBHwlm8lPilArRYkpajJlQ7fYNOqaC0lZIQt--6o_QaUr3GFeUcELVITpirJMdld0xur1cUvFuaVN2m-JNhrGBZQxrDBmC32Vnm-ubi8Z6MI9mhqayD6kiEOddA9u1wi6XCM2Ty3fN7IsNCZqyZvMA79DBZHyC0-d6gm6-fb0-_95e_bi4PP9y1VrOu9xyMgklFKUW9303DaOaQPCOSY5tRwemesGmAaDHYw8wip50bGBynKwZQVlgJ-jzXnctwwZGC0uOxus1uo2JOx2M0_9OFnen5_Coe6VwT2QV-PAsEMPPAinrjUsWvDcLhJI05UoxKbnEFaV71MaQUoTp5QzB-ncyep-MrnbrP8nobV16__rBl5W_OVSA7YFUR8sMUd-HEpdq2v9kfwFECJ1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499388480</pqid></control><display><type>article</type><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</creator><creatorcontrib>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</creatorcontrib><description>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific
Tug
(
Aspscr1
)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-021-00359-x</identifier><identifier>PMID: 33686286</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 38/91 ; 3T3-L1 Cells ; 631/443/319/1557 ; 631/443/319/1642 ; 631/80/313 ; 631/80/474 ; 631/80/86 ; 64/60 ; Aminoacyltransferases - metabolism ; Animals ; Biomedical and Life Sciences ; Energy Metabolism ; Glucose - metabolism ; Insulin - metabolism ; Intracellular Signaling Peptides and Proteins - metabolism ; Life Sciences ; Mice ; Mice, Knockout ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; PPAR gamma - metabolism ; Proteolysis ; Thermogenesis</subject><ispartof>Nature metabolism, 2021-03, Vol.3 (3), p.378-393</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</citedby><cites>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</cites><orcidid>0000-0003-2073-0273 ; 0000-0001-9219-8322 ; 0000-0002-6985-6072 ; 0000-0001-7547-4022 ; 0000-0003-1529-5668 ; 0000-0001-6463-8466 ; 0000-0002-1205-8440 ; 0000-0001-7476-9822 ; 0000-0003-4495-3308 ; 0000-0003-3486-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-021-00359-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-021-00359-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Camporez, João Paulo</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Sales, Chloe I.</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>López-Giráldez, Francesc</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>Ruiz, Diana M.</creatorcontrib><creatorcontrib>Wang, Kenny Y.</creatorcontrib><creatorcontrib>Sayal, Bhavesh S.</creatorcontrib><creatorcontrib>González Zapata, Sofia</creatorcontrib><creatorcontrib>Dann, Pamela</creatorcontrib><creatorcontrib>Brown, Stacey N.</creatorcontrib><creatorcontrib>Hirabara, Sandro</creatorcontrib><creatorcontrib>Vatner, Daniel F.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Philbrick, William</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific
Tug
(
Aspscr1
)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</description><subject>13/95</subject><subject>38/91</subject><subject>3T3-L1 Cells</subject><subject>631/443/319/1557</subject><subject>631/443/319/1642</subject><subject>631/80/313</subject><subject>631/80/474</subject><subject>631/80/86</subject><subject>64/60</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Insulin - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>PPAR gamma - metabolism</subject><subject>Proteolysis</subject><subject>Thermogenesis</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3TAQha2qCBDlD7CosuwmrZ-JvalUoZYiIXUDOyTLcSbB4BunfsC9_75uL0V009WMNN-cGZ2D0BnBHwlm8lPilArRYkpajJlQ7fYNOqaC0lZIQt--6o_QaUr3GFeUcELVITpirJMdld0xur1cUvFuaVN2m-JNhrGBZQxrDBmC32Vnm-ubi8Z6MI9mhqayD6kiEOddA9u1wi6XCM2Ty3fN7IsNCZqyZvMA79DBZHyC0-d6gm6-fb0-_95e_bi4PP9y1VrOu9xyMgklFKUW9303DaOaQPCOSY5tRwemesGmAaDHYw8wip50bGBynKwZQVlgJ-jzXnctwwZGC0uOxus1uo2JOx2M0_9OFnen5_Coe6VwT2QV-PAsEMPPAinrjUsWvDcLhJI05UoxKbnEFaV71MaQUoTp5QzB-ncyep-MrnbrP8nobV16__rBl5W_OVSA7YFUR8sMUd-HEpdq2v9kfwFECJ1k</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Habtemichael, Estifanos N.</creator><creator>Li, Don T.</creator><creator>Camporez, João Paulo</creator><creator>Westergaard, Xavier O.</creator><creator>Sales, Chloe I.</creator><creator>Liu, Xinran</creator><creator>López-Giráldez, Francesc</creator><creator>DeVries, Stephen G.</creator><creator>Li, Hanbing</creator><creator>Ruiz, Diana M.</creator><creator>Wang, Kenny Y.</creator><creator>Sayal, Bhavesh S.</creator><creator>González Zapata, Sofia</creator><creator>Dann, Pamela</creator><creator>Brown, Stacey N.</creator><creator>Hirabara, Sandro</creator><creator>Vatner, Daniel F.</creator><creator>Goedeke, Leigh</creator><creator>Philbrick, William</creator><creator>Shulman, Gerald I.</creator><creator>Bogan, Jonathan S.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2073-0273</orcidid><orcidid>https://orcid.org/0000-0001-9219-8322</orcidid><orcidid>https://orcid.org/0000-0002-6985-6072</orcidid><orcidid>https://orcid.org/0000-0001-7547-4022</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid><orcidid>https://orcid.org/0000-0002-1205-8440</orcidid><orcidid>https://orcid.org/0000-0001-7476-9822</orcidid><orcidid>https://orcid.org/0000-0003-4495-3308</orcidid><orcidid>https://orcid.org/0000-0003-3486-4301</orcidid></search><sort><creationdate>20210301</creationdate><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><author>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/95</topic><topic>38/91</topic><topic>3T3-L1 Cells</topic><topic>631/443/319/1557</topic><topic>631/443/319/1642</topic><topic>631/80/313</topic><topic>631/80/474</topic><topic>631/80/86</topic><topic>64/60</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Insulin - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>PPAR gamma - metabolism</topic><topic>Proteolysis</topic><topic>Thermogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Camporez, João Paulo</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Sales, Chloe I.</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>López-Giráldez, Francesc</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>Ruiz, Diana M.</creatorcontrib><creatorcontrib>Wang, Kenny Y.</creatorcontrib><creatorcontrib>Sayal, Bhavesh S.</creatorcontrib><creatorcontrib>González Zapata, Sofia</creatorcontrib><creatorcontrib>Dann, Pamela</creatorcontrib><creatorcontrib>Brown, Stacey N.</creatorcontrib><creatorcontrib>Hirabara, Sandro</creatorcontrib><creatorcontrib>Vatner, Daniel F.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Philbrick, William</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habtemichael, Estifanos N.</au><au>Li, Don T.</au><au>Camporez, João Paulo</au><au>Westergaard, Xavier O.</au><au>Sales, Chloe I.</au><au>Liu, Xinran</au><au>López-Giráldez, Francesc</au><au>DeVries, Stephen G.</au><au>Li, Hanbing</au><au>Ruiz, Diana M.</au><au>Wang, Kenny Y.</au><au>Sayal, Bhavesh S.</au><au>González Zapata, Sofia</au><au>Dann, Pamela</au><au>Brown, Stacey N.</au><au>Hirabara, Sandro</au><au>Vatner, Daniel F.</au><au>Goedeke, Leigh</au><au>Philbrick, William</au><au>Shulman, Gerald I.</au><au>Bogan, Jonathan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>378</spage><epage>393</epage><pages>378-393</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific
Tug
(
Aspscr1
)-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity.
Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33686286</pmid><doi>10.1038/s42255-021-00359-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2073-0273</orcidid><orcidid>https://orcid.org/0000-0001-9219-8322</orcidid><orcidid>https://orcid.org/0000-0002-6985-6072</orcidid><orcidid>https://orcid.org/0000-0001-7547-4022</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid><orcidid>https://orcid.org/0000-0002-1205-8440</orcidid><orcidid>https://orcid.org/0000-0001-7476-9822</orcidid><orcidid>https://orcid.org/0000-0003-4495-3308</orcidid><orcidid>https://orcid.org/0000-0003-3486-4301</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5812 |
ispartof | Nature metabolism, 2021-03, Vol.3 (3), p.378-393 |
issn | 2522-5812 2522-5812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990718 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/95 38/91 3T3-L1 Cells 631/443/319/1557 631/443/319/1642 631/80/313 631/80/474 631/80/86 64/60 Aminoacyltransferases - metabolism Animals Biomedical and Life Sciences Energy Metabolism Glucose - metabolism Insulin - metabolism Intracellular Signaling Peptides and Proteins - metabolism Life Sciences Mice Mice, Knockout Oxidation-Reduction Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism PPAR gamma - metabolism Proteolysis Thermogenesis |
title | Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-stimulated%20endoproteolytic%20TUG%20cleavage%20links%20energy%20expenditure%20with%20glucose%20uptake&rft.jtitle=Nature%20metabolism&rft.au=Habtemichael,%20Estifanos%20N.&rft.date=2021-03-01&rft.volume=3&rft.issue=3&rft.spage=378&rft.epage=393&rft.pages=378-393&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-021-00359-x&rft_dat=%3Cproquest_pubme%3E2499388480%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499388480&rft_id=info:pmid/33686286&rfr_iscdi=true |