Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake

TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance rema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2021-03, Vol.3 (3), p.378-393
Hauptverfasser: Habtemichael, Estifanos N., Li, Don T., Camporez, João Paulo, Westergaard, Xavier O., Sales, Chloe I., Liu, Xinran, López-Giráldez, Francesc, DeVries, Stephen G., Li, Hanbing, Ruiz, Diana M., Wang, Kenny Y., Sayal, Bhavesh S., González Zapata, Sofia, Dann, Pamela, Brown, Stacey N., Hirabara, Sandro, Vatner, Daniel F., Goedeke, Leigh, Philbrick, William, Shulman, Gerald I., Bogan, Jonathan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 3
container_start_page 378
container_title Nature metabolism
container_volume 3
creator Habtemichael, Estifanos N.
Li, Don T.
Camporez, João Paulo
Westergaard, Xavier O.
Sales, Chloe I.
Liu, Xinran
López-Giráldez, Francesc
DeVries, Stephen G.
Li, Hanbing
Ruiz, Diana M.
Wang, Kenny Y.
Sayal, Bhavesh S.
González Zapata, Sofia
Dann, Pamela
Brown, Stacey N.
Hirabara, Sandro
Vatner, Daniel F.
Goedeke, Leigh
Philbrick, William
Shulman, Gerald I.
Bogan, Jonathan S.
description TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug ( Aspscr1 )-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity. Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.
doi_str_mv 10.1038/s42255-021-00359-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499388480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</originalsourceid><addsrcrecordid>eNp9kUtP3TAQha2qCBDlD7CosuwmrZ-JvalUoZYiIXUDOyTLcSbB4BunfsC9_75uL0V009WMNN-cGZ2D0BnBHwlm8lPilArRYkpajJlQ7fYNOqaC0lZIQt--6o_QaUr3GFeUcELVITpirJMdld0xur1cUvFuaVN2m-JNhrGBZQxrDBmC32Vnm-ubi8Z6MI9mhqayD6kiEOddA9u1wi6XCM2Ty3fN7IsNCZqyZvMA79DBZHyC0-d6gm6-fb0-_95e_bi4PP9y1VrOu9xyMgklFKUW9303DaOaQPCOSY5tRwemesGmAaDHYw8wip50bGBynKwZQVlgJ-jzXnctwwZGC0uOxus1uo2JOx2M0_9OFnen5_Coe6VwT2QV-PAsEMPPAinrjUsWvDcLhJI05UoxKbnEFaV71MaQUoTp5QzB-ncyep-MrnbrP8nobV16__rBl5W_OVSA7YFUR8sMUd-HEpdq2v9kfwFECJ1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499388480</pqid></control><display><type>article</type><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</creator><creatorcontrib>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</creatorcontrib><description>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug ( Aspscr1 )-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity. Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-021-00359-x</identifier><identifier>PMID: 33686286</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/95 ; 38/91 ; 3T3-L1 Cells ; 631/443/319/1557 ; 631/443/319/1642 ; 631/80/313 ; 631/80/474 ; 631/80/86 ; 64/60 ; Aminoacyltransferases - metabolism ; Animals ; Biomedical and Life Sciences ; Energy Metabolism ; Glucose - metabolism ; Insulin - metabolism ; Intracellular Signaling Peptides and Proteins - metabolism ; Life Sciences ; Mice ; Mice, Knockout ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism ; PPAR gamma - metabolism ; Proteolysis ; Thermogenesis</subject><ispartof>Nature metabolism, 2021-03, Vol.3 (3), p.378-393</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited part of Springer Nature 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</citedby><cites>FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</cites><orcidid>0000-0003-2073-0273 ; 0000-0001-9219-8322 ; 0000-0002-6985-6072 ; 0000-0001-7547-4022 ; 0000-0003-1529-5668 ; 0000-0001-6463-8466 ; 0000-0002-1205-8440 ; 0000-0001-7476-9822 ; 0000-0003-4495-3308 ; 0000-0003-3486-4301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-021-00359-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-021-00359-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33686286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Camporez, João Paulo</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Sales, Chloe I.</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>López-Giráldez, Francesc</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>Ruiz, Diana M.</creatorcontrib><creatorcontrib>Wang, Kenny Y.</creatorcontrib><creatorcontrib>Sayal, Bhavesh S.</creatorcontrib><creatorcontrib>González Zapata, Sofia</creatorcontrib><creatorcontrib>Dann, Pamela</creatorcontrib><creatorcontrib>Brown, Stacey N.</creatorcontrib><creatorcontrib>Hirabara, Sandro</creatorcontrib><creatorcontrib>Vatner, Daniel F.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Philbrick, William</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug ( Aspscr1 )-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity. Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</description><subject>13/95</subject><subject>38/91</subject><subject>3T3-L1 Cells</subject><subject>631/443/319/1557</subject><subject>631/443/319/1642</subject><subject>631/80/313</subject><subject>631/80/474</subject><subject>631/80/86</subject><subject>64/60</subject><subject>Aminoacyltransferases - metabolism</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Energy Metabolism</subject><subject>Glucose - metabolism</subject><subject>Insulin - metabolism</subject><subject>Intracellular Signaling Peptides and Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</subject><subject>PPAR gamma - metabolism</subject><subject>Proteolysis</subject><subject>Thermogenesis</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtP3TAQha2qCBDlD7CosuwmrZ-JvalUoZYiIXUDOyTLcSbB4BunfsC9_75uL0V009WMNN-cGZ2D0BnBHwlm8lPilArRYkpajJlQ7fYNOqaC0lZIQt--6o_QaUr3GFeUcELVITpirJMdld0xur1cUvFuaVN2m-JNhrGBZQxrDBmC32Vnm-ubi8Z6MI9mhqayD6kiEOddA9u1wi6XCM2Ty3fN7IsNCZqyZvMA79DBZHyC0-d6gm6-fb0-_95e_bi4PP9y1VrOu9xyMgklFKUW9303DaOaQPCOSY5tRwemesGmAaDHYw8wip50bGBynKwZQVlgJ-jzXnctwwZGC0uOxus1uo2JOx2M0_9OFnen5_Coe6VwT2QV-PAsEMPPAinrjUsWvDcLhJI05UoxKbnEFaV71MaQUoTp5QzB-ncyep-MrnbrP8nobV16__rBl5W_OVSA7YFUR8sMUd-HEpdq2v9kfwFECJ1k</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Habtemichael, Estifanos N.</creator><creator>Li, Don T.</creator><creator>Camporez, João Paulo</creator><creator>Westergaard, Xavier O.</creator><creator>Sales, Chloe I.</creator><creator>Liu, Xinran</creator><creator>López-Giráldez, Francesc</creator><creator>DeVries, Stephen G.</creator><creator>Li, Hanbing</creator><creator>Ruiz, Diana M.</creator><creator>Wang, Kenny Y.</creator><creator>Sayal, Bhavesh S.</creator><creator>González Zapata, Sofia</creator><creator>Dann, Pamela</creator><creator>Brown, Stacey N.</creator><creator>Hirabara, Sandro</creator><creator>Vatner, Daniel F.</creator><creator>Goedeke, Leigh</creator><creator>Philbrick, William</creator><creator>Shulman, Gerald I.</creator><creator>Bogan, Jonathan S.</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2073-0273</orcidid><orcidid>https://orcid.org/0000-0001-9219-8322</orcidid><orcidid>https://orcid.org/0000-0002-6985-6072</orcidid><orcidid>https://orcid.org/0000-0001-7547-4022</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid><orcidid>https://orcid.org/0000-0002-1205-8440</orcidid><orcidid>https://orcid.org/0000-0001-7476-9822</orcidid><orcidid>https://orcid.org/0000-0003-4495-3308</orcidid><orcidid>https://orcid.org/0000-0003-3486-4301</orcidid></search><sort><creationdate>20210301</creationdate><title>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</title><author>Habtemichael, Estifanos N. ; Li, Don T. ; Camporez, João Paulo ; Westergaard, Xavier O. ; Sales, Chloe I. ; Liu, Xinran ; López-Giráldez, Francesc ; DeVries, Stephen G. ; Li, Hanbing ; Ruiz, Diana M. ; Wang, Kenny Y. ; Sayal, Bhavesh S. ; González Zapata, Sofia ; Dann, Pamela ; Brown, Stacey N. ; Hirabara, Sandro ; Vatner, Daniel F. ; Goedeke, Leigh ; Philbrick, William ; Shulman, Gerald I. ; Bogan, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-41f595922c0776fbd9fe5463840c62b39753fbee70d7eed57163b38dfcade9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/95</topic><topic>38/91</topic><topic>3T3-L1 Cells</topic><topic>631/443/319/1557</topic><topic>631/443/319/1642</topic><topic>631/80/313</topic><topic>631/80/474</topic><topic>631/80/86</topic><topic>64/60</topic><topic>Aminoacyltransferases - metabolism</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Energy Metabolism</topic><topic>Glucose - metabolism</topic><topic>Insulin - metabolism</topic><topic>Intracellular Signaling Peptides and Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism</topic><topic>PPAR gamma - metabolism</topic><topic>Proteolysis</topic><topic>Thermogenesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habtemichael, Estifanos N.</creatorcontrib><creatorcontrib>Li, Don T.</creatorcontrib><creatorcontrib>Camporez, João Paulo</creatorcontrib><creatorcontrib>Westergaard, Xavier O.</creatorcontrib><creatorcontrib>Sales, Chloe I.</creatorcontrib><creatorcontrib>Liu, Xinran</creatorcontrib><creatorcontrib>López-Giráldez, Francesc</creatorcontrib><creatorcontrib>DeVries, Stephen G.</creatorcontrib><creatorcontrib>Li, Hanbing</creatorcontrib><creatorcontrib>Ruiz, Diana M.</creatorcontrib><creatorcontrib>Wang, Kenny Y.</creatorcontrib><creatorcontrib>Sayal, Bhavesh S.</creatorcontrib><creatorcontrib>González Zapata, Sofia</creatorcontrib><creatorcontrib>Dann, Pamela</creatorcontrib><creatorcontrib>Brown, Stacey N.</creatorcontrib><creatorcontrib>Hirabara, Sandro</creatorcontrib><creatorcontrib>Vatner, Daniel F.</creatorcontrib><creatorcontrib>Goedeke, Leigh</creatorcontrib><creatorcontrib>Philbrick, William</creatorcontrib><creatorcontrib>Shulman, Gerald I.</creatorcontrib><creatorcontrib>Bogan, Jonathan S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habtemichael, Estifanos N.</au><au>Li, Don T.</au><au>Camporez, João Paulo</au><au>Westergaard, Xavier O.</au><au>Sales, Chloe I.</au><au>Liu, Xinran</au><au>López-Giráldez, Francesc</au><au>DeVries, Stephen G.</au><au>Li, Hanbing</au><au>Ruiz, Diana M.</au><au>Wang, Kenny Y.</au><au>Sayal, Bhavesh S.</au><au>González Zapata, Sofia</au><au>Dann, Pamela</au><au>Brown, Stacey N.</au><au>Hirabara, Sandro</au><au>Vatner, Daniel F.</au><au>Goedeke, Leigh</au><au>Philbrick, William</au><au>Shulman, Gerald I.</au><au>Bogan, Jonathan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>378</spage><epage>393</epage><pages>378-393</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>TUG tethering proteins bind and sequester GLUT4 glucose transporters intracellularly, and insulin stimulates TUG cleavage to translocate GLUT4 to the cell surface and increase glucose uptake. This effect of insulin is independent of phosphatidylinositol 3-kinase, and its physiological relevance remains uncertain. Here we show that this TUG cleavage pathway regulates both insulin-stimulated glucose uptake in muscle and organism-level energy expenditure. Using mice with muscle-specific Tug ( Aspscr1 )-knockout and muscle-specific constitutive TUG cleavage, we show that, after GLUT4 release, the TUG C-terminal cleavage product enters the nucleus, binds peroxisome proliferator-activated receptor (PPAR)γ and its coactivator PGC-1α and regulates gene expression to promote lipid oxidation and thermogenesis. This pathway acts in muscle and adipose cells to upregulate sarcolipin and uncoupling protein 1 (UCP1), respectively. The PPARγ2 Pro12Ala polymorphism, which reduces diabetes risk, enhances TUG binding. The ATE1 arginyltransferase, which mediates a specific protein degradation pathway and controls thermogenesis, regulates the stability of the TUG product. We conclude that insulin-stimulated TUG cleavage coordinates whole-body energy expenditure with glucose uptake, that this mechanism might contribute to the thermic effect of food and that its attenuation could promote obesity. Insulin stimulates TUG cleavage to translocate GLUT4 and enhance glucose uptake. Here Bogan and colleagues show that the TUG cleavage product regulates thermogenic gene transcription, thereby coupling glucose uptake to organismal energy expenditure.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33686286</pmid><doi>10.1038/s42255-021-00359-x</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2073-0273</orcidid><orcidid>https://orcid.org/0000-0001-9219-8322</orcidid><orcidid>https://orcid.org/0000-0002-6985-6072</orcidid><orcidid>https://orcid.org/0000-0001-7547-4022</orcidid><orcidid>https://orcid.org/0000-0003-1529-5668</orcidid><orcidid>https://orcid.org/0000-0001-6463-8466</orcidid><orcidid>https://orcid.org/0000-0002-1205-8440</orcidid><orcidid>https://orcid.org/0000-0001-7476-9822</orcidid><orcidid>https://orcid.org/0000-0003-4495-3308</orcidid><orcidid>https://orcid.org/0000-0003-3486-4301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2021-03, Vol.3 (3), p.378-393
issn 2522-5812
2522-5812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7990718
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects 13/95
38/91
3T3-L1 Cells
631/443/319/1557
631/443/319/1642
631/80/313
631/80/474
631/80/86
64/60
Aminoacyltransferases - metabolism
Animals
Biomedical and Life Sciences
Energy Metabolism
Glucose - metabolism
Insulin - metabolism
Intracellular Signaling Peptides and Proteins - metabolism
Life Sciences
Mice
Mice, Knockout
Oxidation-Reduction
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha - metabolism
PPAR gamma - metabolism
Proteolysis
Thermogenesis
title Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insulin-stimulated%20endoproteolytic%20TUG%20cleavage%20links%20energy%20expenditure%20with%20glucose%20uptake&rft.jtitle=Nature%20metabolism&rft.au=Habtemichael,%20Estifanos%20N.&rft.date=2021-03-01&rft.volume=3&rft.issue=3&rft.spage=378&rft.epage=393&rft.pages=378-393&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-021-00359-x&rft_dat=%3Cproquest_pubme%3E2499388480%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499388480&rft_id=info:pmid/33686286&rfr_iscdi=true