Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?

Background Acardiac twinning is a complication of monochorionic twin pregnancies. From literature reports, 30 of 41 relatively large acardiac twins with renal tissue produced polyhydramnios within their amniotic compartment. We aim to investigate the underlying mechanisms that cause excess amniotic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Birth defects research 2021-04, Vol.113 (6), p.500-510
Hauptverfasser: Gemert, Martin J. C., Nikkels, Peter G. J., Ross, Michael G., Wijngaard, Jeroen P. H. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 510
container_issue 6
container_start_page 500
container_title Birth defects research
container_volume 113
creator Gemert, Martin J. C.
Nikkels, Peter G. J.
Ross, Michael G.
Wijngaard, Jeroen P. H. M.
description Background Acardiac twinning is a complication of monochorionic twin pregnancies. From literature reports, 30 of 41 relatively large acardiac twins with renal tissue produced polyhydramnios within their amniotic compartment. We aim to investigate the underlying mechanisms that cause excess amniotic fluid using an established model of fetal fluid dynamics. Methods We assumed that acardiac onset is before 13 weeks, acardiacs with renal tissue have normal kidney function and produce urine flow from 11 weeks on, and acardiac urine production requires a pressure of half the pump twin's mean arterial pressure. We apply a resistance network with the pump twin's arterio‐venous pressure as source, pump umbilical arteries, placenta, placental arterio‐arterial (AA) anastomoses and acardiac resistances. Acardiac amniotic fluid dynamics excluded acardiac lung fluid secretion, swallowing and the relatively small intramembranous flow. Results In small acardiacs with sufficient urine production, polyhydramnios will occur due to the lack of amniotic fluid resorption. Urine production is dependent upon having sufficient mean arterial pressure, which requires nearly a two‐fold larger resistance within the acardiac as compared to the placental AA resistance. Subphysiologic arterial pressure may result in renal dysgenesis. Conclusion Our findings suggest the potential for prediction of which clinical acardiac cases may or may not develop polyhydramnios based upon noninvasive assessments of renal tissue, blood flow and urine production. This information would be of great value in determining early obstetric interventions as opposed to conservative management. These findings may also contribute to an improved knowledge of the fascinating pathophysiology that surrounds acardiac twinning.
doi_str_mv 10.1002/bdr2.1874
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2486145944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4034-75a1e50c699ebe4698288e5b5904ec3c94741fea26ba6e4b192f45128bc9b85e3</originalsourceid><addsrcrecordid>eNp1kc1qGzEUhUVpqEOSRV-gCLppF44ljWYkZZGS_wQChdKfpdBormOFseRIMzHz9pHjxDiBrq6QPn1czkHoMyWHlBA2qZvIDqkU_APaZVywMRVMfNw6j9BBSveEECoZFYX8hEZFUTLFVbGL4MSa2Dhjcbd0Hi8i3HnjrYOEFyZ2-O8R_jcbcBPyhfHYvKGXrpvhCN60uHMp9ZD_h6a3eYZ2mA1NNHPvQvqxj3ampk1w8DL30J_Li99n1-Pbn1c3Zye3Y8tJwceiNBRKYiuloAZeKcmkhLIuFeFgC6u44HQKhlW1qYDXVLEpLymTtVW1LKHYQ8dr76Kv59BY8F00rV5ENzdx0ME4_fbFu5m-C49aKFnlbLLg24sghoceUqfnLlloW-Mh9EkznjleKs4z-vUdeh_6mLNYUSrnTCrBMvV9TdkYUoow3SxDiV71p1f96VV_mf2yvf2GfG0rA5M1sHQtDP836dPzX-xZ-QRspaUk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497380672</pqid></control><display><type>article</type><title>Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?</title><source>Wiley Journals</source><creator>Gemert, Martin J. C. ; Nikkels, Peter G. J. ; Ross, Michael G. ; Wijngaard, Jeroen P. H. M.</creator><creatorcontrib>Gemert, Martin J. C. ; Nikkels, Peter G. J. ; Ross, Michael G. ; Wijngaard, Jeroen P. H. M.</creatorcontrib><description>Background Acardiac twinning is a complication of monochorionic twin pregnancies. From literature reports, 30 of 41 relatively large acardiac twins with renal tissue produced polyhydramnios within their amniotic compartment. We aim to investigate the underlying mechanisms that cause excess amniotic fluid using an established model of fetal fluid dynamics. Methods We assumed that acardiac onset is before 13 weeks, acardiacs with renal tissue have normal kidney function and produce urine flow from 11 weeks on, and acardiac urine production requires a pressure of half the pump twin's mean arterial pressure. We apply a resistance network with the pump twin's arterio‐venous pressure as source, pump umbilical arteries, placenta, placental arterio‐arterial (AA) anastomoses and acardiac resistances. Acardiac amniotic fluid dynamics excluded acardiac lung fluid secretion, swallowing and the relatively small intramembranous flow. Results In small acardiacs with sufficient urine production, polyhydramnios will occur due to the lack of amniotic fluid resorption. Urine production is dependent upon having sufficient mean arterial pressure, which requires nearly a two‐fold larger resistance within the acardiac as compared to the placental AA resistance. Subphysiologic arterial pressure may result in renal dysgenesis. Conclusion Our findings suggest the potential for prediction of which clinical acardiac cases may or may not develop polyhydramnios based upon noninvasive assessments of renal tissue, blood flow and urine production. This information would be of great value in determining early obstetric interventions as opposed to conservative management. These findings may also contribute to an improved knowledge of the fascinating pathophysiology that surrounds acardiac twinning.</description><identifier>ISSN: 2472-1727</identifier><identifier>EISSN: 2472-1727</identifier><identifier>DOI: 10.1002/bdr2.1874</identifier><identifier>PMID: 33529493</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>acardiac onset ; acardiac twin with renal tissue ; acardiac twinning ; Amniotic fluid ; amniotic fluid dynamics ; Arteries ; arterio‐arterial anastomosis ; Blood flow ; Blood pressure ; computational model simulations ; fetoplacental resistance network ; Fetuses ; Fluid dynamics ; Hydrodynamics ; intramembranous flow ; Placenta ; polyhydramnios ; Tissues ; Urine ; urine production</subject><ispartof>Birth defects research, 2021-04, Vol.113 (6), p.500-510</ispartof><rights>2021 The Authors. by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Birth Defects Research published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4034-75a1e50c699ebe4698288e5b5904ec3c94741fea26ba6e4b192f45128bc9b85e3</cites><orcidid>0000-0001-6648-8967 ; 0000-0002-3747-6219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbdr2.1874$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbdr2.1874$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33529493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gemert, Martin J. C.</creatorcontrib><creatorcontrib>Nikkels, Peter G. J.</creatorcontrib><creatorcontrib>Ross, Michael G.</creatorcontrib><creatorcontrib>Wijngaard, Jeroen P. H. M.</creatorcontrib><title>Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?</title><title>Birth defects research</title><addtitle>Birth Defects Res</addtitle><description>Background Acardiac twinning is a complication of monochorionic twin pregnancies. From literature reports, 30 of 41 relatively large acardiac twins with renal tissue produced polyhydramnios within their amniotic compartment. We aim to investigate the underlying mechanisms that cause excess amniotic fluid using an established model of fetal fluid dynamics. Methods We assumed that acardiac onset is before 13 weeks, acardiacs with renal tissue have normal kidney function and produce urine flow from 11 weeks on, and acardiac urine production requires a pressure of half the pump twin's mean arterial pressure. We apply a resistance network with the pump twin's arterio‐venous pressure as source, pump umbilical arteries, placenta, placental arterio‐arterial (AA) anastomoses and acardiac resistances. Acardiac amniotic fluid dynamics excluded acardiac lung fluid secretion, swallowing and the relatively small intramembranous flow. Results In small acardiacs with sufficient urine production, polyhydramnios will occur due to the lack of amniotic fluid resorption. Urine production is dependent upon having sufficient mean arterial pressure, which requires nearly a two‐fold larger resistance within the acardiac as compared to the placental AA resistance. Subphysiologic arterial pressure may result in renal dysgenesis. Conclusion Our findings suggest the potential for prediction of which clinical acardiac cases may or may not develop polyhydramnios based upon noninvasive assessments of renal tissue, blood flow and urine production. This information would be of great value in determining early obstetric interventions as opposed to conservative management. These findings may also contribute to an improved knowledge of the fascinating pathophysiology that surrounds acardiac twinning.</description><subject>acardiac onset</subject><subject>acardiac twin with renal tissue</subject><subject>acardiac twinning</subject><subject>Amniotic fluid</subject><subject>amniotic fluid dynamics</subject><subject>Arteries</subject><subject>arterio‐arterial anastomosis</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>computational model simulations</subject><subject>fetoplacental resistance network</subject><subject>Fetuses</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>intramembranous flow</subject><subject>Placenta</subject><subject>polyhydramnios</subject><subject>Tissues</subject><subject>Urine</subject><subject>urine production</subject><issn>2472-1727</issn><issn>2472-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kc1qGzEUhUVpqEOSRV-gCLppF44ljWYkZZGS_wQChdKfpdBormOFseRIMzHz9pHjxDiBrq6QPn1czkHoMyWHlBA2qZvIDqkU_APaZVywMRVMfNw6j9BBSveEECoZFYX8hEZFUTLFVbGL4MSa2Dhjcbd0Hi8i3HnjrYOEFyZ2-O8R_jcbcBPyhfHYvKGXrpvhCN60uHMp9ZD_h6a3eYZ2mA1NNHPvQvqxj3ampk1w8DL30J_Li99n1-Pbn1c3Zye3Y8tJwceiNBRKYiuloAZeKcmkhLIuFeFgC6u44HQKhlW1qYDXVLEpLymTtVW1LKHYQ8dr76Kv59BY8F00rV5ENzdx0ME4_fbFu5m-C49aKFnlbLLg24sghoceUqfnLlloW-Mh9EkznjleKs4z-vUdeh_6mLNYUSrnTCrBMvV9TdkYUoow3SxDiV71p1f96VV_mf2yvf2GfG0rA5M1sHQtDP836dPzX-xZ-QRspaUk</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Gemert, Martin J. C.</creator><creator>Nikkels, Peter G. J.</creator><creator>Ross, Michael G.</creator><creator>Wijngaard, Jeroen P. H. M.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6648-8967</orcidid><orcidid>https://orcid.org/0000-0002-3747-6219</orcidid></search><sort><creationdate>20210401</creationdate><title>Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?</title><author>Gemert, Martin J. C. ; Nikkels, Peter G. J. ; Ross, Michael G. ; Wijngaard, Jeroen P. H. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4034-75a1e50c699ebe4698288e5b5904ec3c94741fea26ba6e4b192f45128bc9b85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acardiac onset</topic><topic>acardiac twin with renal tissue</topic><topic>acardiac twinning</topic><topic>Amniotic fluid</topic><topic>amniotic fluid dynamics</topic><topic>Arteries</topic><topic>arterio‐arterial anastomosis</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>computational model simulations</topic><topic>fetoplacental resistance network</topic><topic>Fetuses</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>intramembranous flow</topic><topic>Placenta</topic><topic>polyhydramnios</topic><topic>Tissues</topic><topic>Urine</topic><topic>urine production</topic><toplevel>online_resources</toplevel><creatorcontrib>Gemert, Martin J. C.</creatorcontrib><creatorcontrib>Nikkels, Peter G. J.</creatorcontrib><creatorcontrib>Ross, Michael G.</creatorcontrib><creatorcontrib>Wijngaard, Jeroen P. H. M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Birth defects research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gemert, Martin J. C.</au><au>Nikkels, Peter G. J.</au><au>Ross, Michael G.</au><au>Wijngaard, Jeroen P. H. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?</atitle><jtitle>Birth defects research</jtitle><addtitle>Birth Defects Res</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>113</volume><issue>6</issue><spage>500</spage><epage>510</epage><pages>500-510</pages><issn>2472-1727</issn><eissn>2472-1727</eissn><abstract>Background Acardiac twinning is a complication of monochorionic twin pregnancies. From literature reports, 30 of 41 relatively large acardiac twins with renal tissue produced polyhydramnios within their amniotic compartment. We aim to investigate the underlying mechanisms that cause excess amniotic fluid using an established model of fetal fluid dynamics. Methods We assumed that acardiac onset is before 13 weeks, acardiacs with renal tissue have normal kidney function and produce urine flow from 11 weeks on, and acardiac urine production requires a pressure of half the pump twin's mean arterial pressure. We apply a resistance network with the pump twin's arterio‐venous pressure as source, pump umbilical arteries, placenta, placental arterio‐arterial (AA) anastomoses and acardiac resistances. Acardiac amniotic fluid dynamics excluded acardiac lung fluid secretion, swallowing and the relatively small intramembranous flow. Results In small acardiacs with sufficient urine production, polyhydramnios will occur due to the lack of amniotic fluid resorption. Urine production is dependent upon having sufficient mean arterial pressure, which requires nearly a two‐fold larger resistance within the acardiac as compared to the placental AA resistance. Subphysiologic arterial pressure may result in renal dysgenesis. Conclusion Our findings suggest the potential for prediction of which clinical acardiac cases may or may not develop polyhydramnios based upon noninvasive assessments of renal tissue, blood flow and urine production. This information would be of great value in determining early obstetric interventions as opposed to conservative management. These findings may also contribute to an improved knowledge of the fascinating pathophysiology that surrounds acardiac twinning.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>33529493</pmid><doi>10.1002/bdr2.1874</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6648-8967</orcidid><orcidid>https://orcid.org/0000-0002-3747-6219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-1727
ispartof Birth defects research, 2021-04, Vol.113 (6), p.500-510
issn 2472-1727
2472-1727
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7986173
source Wiley Journals
subjects acardiac onset
acardiac twin with renal tissue
acardiac twinning
Amniotic fluid
amniotic fluid dynamics
Arteries
arterio‐arterial anastomosis
Blood flow
Blood pressure
computational model simulations
fetoplacental resistance network
Fetuses
Fluid dynamics
Hydrodynamics
intramembranous flow
Placenta
polyhydramnios
Tissues
Urine
urine production
title Acardiac twin pregnancies part V: Why does an acardiac twin with renal tissue produce polyhydramnios?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A34%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acardiac%20twin%20pregnancies%20part%20V:%20Why%20does%20an%20acardiac%20twin%20with%20renal%20tissue%20produce%20polyhydramnios?&rft.jtitle=Birth%20defects%20research&rft.au=Gemert,%20Martin%20J.%20C.&rft.date=2021-04-01&rft.volume=113&rft.issue=6&rft.spage=500&rft.epage=510&rft.pages=500-510&rft.issn=2472-1727&rft.eissn=2472-1727&rft_id=info:doi/10.1002/bdr2.1874&rft_dat=%3Cproquest_pubme%3E2486145944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497380672&rft_id=info:pmid/33529493&rfr_iscdi=true