Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps

In this work, we demonstrate on a new interconnection technology which can be used for bonding Flip-Chips with 5-µm-Bumps and fine pitches

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2021-05, Vol.30 (5), p.3173-3177
Hauptverfasser: Roustaie, F., Quednau, S., Weißenborn, F., Birlem, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3177
container_issue 5
container_start_page 3173
container_title Journal of materials engineering and performance
container_volume 30
creator Roustaie, F.
Quednau, S.
Weißenborn, F.
Birlem, O.
description In this work, we demonstrate on a new interconnection technology which can be used for bonding Flip-Chips with 5-µm-Bumps and fine pitches
doi_str_mv 10.1007/s11665-021-05649-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7985230</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2506514056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-13c6e6ccc5467aecc963471da8db841854a1ab940382197aceccee39732c9d163</originalsourceid><addsrcrecordid>eNp9kU9vEzEQxS0EoqXwBTigPXJx8X-vL0i0oqVSJKoq5Wo5s5PEVdYO9i6Ib48hpaKXnsaa-b1nex4hbzk75YzZD5VzYzRlglOmjXLUPSPHXCtFORPqeTsz3ZrK6SPyqtY71kRCqJfkSEprjeztMfm2yD_pDdZYp5AAu5ucR7rEcY8lTHPB7ipNWCCnhDDFnLolwjbF7zN261y6s5yGmDbdRUzYXccJtt3ZPO7ra_JiHXYV39zXE3J78Xl5_oUuvl5enX9aUFDKTJRLMGgAQCtjAwI4I5XlQ-iHVa94r1XgYeUUk73gzgZoCKJ0VgpwAzfyhHw8-O7n1YgDYJpK2Pl9iWMov3wO0T-epLj1m_zDW9drIVkzeH9vUHL7VJ38GCvgbhcS5rl6oZnRXLX9NlQcUCi51oLrh2s4838C8YdAfAvE_w3EuyZ69_8DHyT_EmiAPAC1jdIGi7_Lc0ltaU_Z_gZp-5hd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2506514056</pqid></control><display><type>article</type><title>Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Roustaie, F. ; Quednau, S. ; Weißenborn, F. ; Birlem, O.</creator><creatorcontrib>Roustaie, F. ; Quednau, S. ; Weißenborn, F. ; Birlem, O.</creatorcontrib><description>In this work, we demonstrate on a new interconnection technology which can be used for bonding Flip-Chips with 5-µm-Bumps and fine pitches &lt;5 µm. In this technology, the bumps on both joint partners are coated with metallic nanowires (in most cases copper, in rare cases gold), through an in situ electrochemical deposition process, the so-called NanoWiring process. The diameter of the wires can be adjusted between 30 and 4000 nm, and their length is ranged from 4 to 50 µm. The process is scaled up for 12 inch wafers. The bonding process can be performed directly at wafer level or also at Flip-Chip level. The nanowires overcome the dicing step. The diced chips can be bonded by adjusting and pressing the NanoWired bumps together at room temperature, using the standard bonding devices. The required bonding forces range from 5 to 50 MPa for flip chips, LEDs and sensors. The bonding with nanowires, the so-called KlettWelding, can be explained by diffusion of the nanowires in each other under compression and weaving of the wires as well. The measured shear strength of these connections yields 15-24 MPa. The very large achieved Surface/Volume quotient of NanoWired surface causes this strength. For a better performance, a prior copper oxide reducing step for the copper NanoWires is needed. This can be done by using standard processes like forming gas plasma or formic acid vapor. By heating during the pressing process up to 230 °C, the shear strength increases to 60 MPa. The nanowired interconnections have an electrical conduction in the range of bulk metal, because of their pure metallic nature. Beside microelectronic applications, the bonding of larger metallic plates like aluminium, copper, steel and also flexible polymers, glass, silicon and ceramics are also enabled.</description><identifier>ISSN: 1059-9495</identifier><identifier>EISSN: 1544-1024</identifier><identifier>DOI: 10.1007/s11665-021-05649-9</identifier><identifier>PMID: 33776387</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Engineering Design ; Materials Science ; Quality Control ; Reliability ; Safety and Risk ; Tribology</subject><ispartof>Journal of materials engineering and performance, 2021-05, Vol.30 (5), p.3173-3177</ispartof><rights>ASM International 2021</rights><rights>ASM International 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-13c6e6ccc5467aecc963471da8db841854a1ab940382197aceccee39732c9d163</citedby><cites>FETCH-LOGICAL-c446t-13c6e6ccc5467aecc963471da8db841854a1ab940382197aceccee39732c9d163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11665-021-05649-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11665-021-05649-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27906,27907,41470,42539,51301</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33776387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roustaie, F.</creatorcontrib><creatorcontrib>Quednau, S.</creatorcontrib><creatorcontrib>Weißenborn, F.</creatorcontrib><creatorcontrib>Birlem, O.</creatorcontrib><title>Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps</title><title>Journal of materials engineering and performance</title><addtitle>J. of Materi Eng and Perform</addtitle><addtitle>J Mater Eng Perform</addtitle><description>In this work, we demonstrate on a new interconnection technology which can be used for bonding Flip-Chips with 5-µm-Bumps and fine pitches &lt;5 µm. In this technology, the bumps on both joint partners are coated with metallic nanowires (in most cases copper, in rare cases gold), through an in situ electrochemical deposition process, the so-called NanoWiring process. The diameter of the wires can be adjusted between 30 and 4000 nm, and their length is ranged from 4 to 50 µm. The process is scaled up for 12 inch wafers. The bonding process can be performed directly at wafer level or also at Flip-Chip level. The nanowires overcome the dicing step. The diced chips can be bonded by adjusting and pressing the NanoWired bumps together at room temperature, using the standard bonding devices. The required bonding forces range from 5 to 50 MPa for flip chips, LEDs and sensors. The bonding with nanowires, the so-called KlettWelding, can be explained by diffusion of the nanowires in each other under compression and weaving of the wires as well. The measured shear strength of these connections yields 15-24 MPa. The very large achieved Surface/Volume quotient of NanoWired surface causes this strength. For a better performance, a prior copper oxide reducing step for the copper NanoWires is needed. This can be done by using standard processes like forming gas plasma or formic acid vapor. By heating during the pressing process up to 230 °C, the shear strength increases to 60 MPa. The nanowired interconnections have an electrical conduction in the range of bulk metal, because of their pure metallic nature. Beside microelectronic applications, the bonding of larger metallic plates like aluminium, copper, steel and also flexible polymers, glass, silicon and ceramics are also enabled.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Engineering Design</subject><subject>Materials Science</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Tribology</subject><issn>1059-9495</issn><issn>1544-1024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vEzEQxS0EoqXwBTigPXJx8X-vL0i0oqVSJKoq5Wo5s5PEVdYO9i6Ib48hpaKXnsaa-b1nex4hbzk75YzZD5VzYzRlglOmjXLUPSPHXCtFORPqeTsz3ZrK6SPyqtY71kRCqJfkSEprjeztMfm2yD_pDdZYp5AAu5ucR7rEcY8lTHPB7ipNWCCnhDDFnLolwjbF7zN261y6s5yGmDbdRUzYXccJtt3ZPO7ra_JiHXYV39zXE3J78Xl5_oUuvl5enX9aUFDKTJRLMGgAQCtjAwI4I5XlQ-iHVa94r1XgYeUUk73gzgZoCKJ0VgpwAzfyhHw8-O7n1YgDYJpK2Pl9iWMov3wO0T-epLj1m_zDW9drIVkzeH9vUHL7VJ38GCvgbhcS5rl6oZnRXLX9NlQcUCi51oLrh2s4838C8YdAfAvE_w3EuyZ69_8DHyT_EmiAPAC1jdIGi7_Lc0ltaU_Z_gZp-5hd</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Roustaie, F.</creator><creator>Quednau, S.</creator><creator>Weißenborn, F.</creator><creator>Birlem, O.</creator><general>Springer US</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210501</creationdate><title>Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps</title><author>Roustaie, F. ; Quednau, S. ; Weißenborn, F. ; Birlem, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-13c6e6ccc5467aecc963471da8db841854a1ab940382197aceccee39732c9d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Engineering Design</topic><topic>Materials Science</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roustaie, F.</creatorcontrib><creatorcontrib>Quednau, S.</creatorcontrib><creatorcontrib>Weißenborn, F.</creatorcontrib><creatorcontrib>Birlem, O.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of materials engineering and performance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roustaie, F.</au><au>Quednau, S.</au><au>Weißenborn, F.</au><au>Birlem, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps</atitle><jtitle>Journal of materials engineering and performance</jtitle><stitle>J. of Materi Eng and Perform</stitle><addtitle>J Mater Eng Perform</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>30</volume><issue>5</issue><spage>3173</spage><epage>3177</epage><pages>3173-3177</pages><issn>1059-9495</issn><eissn>1544-1024</eissn><abstract>In this work, we demonstrate on a new interconnection technology which can be used for bonding Flip-Chips with 5-µm-Bumps and fine pitches &lt;5 µm. In this technology, the bumps on both joint partners are coated with metallic nanowires (in most cases copper, in rare cases gold), through an in situ electrochemical deposition process, the so-called NanoWiring process. The diameter of the wires can be adjusted between 30 and 4000 nm, and their length is ranged from 4 to 50 µm. The process is scaled up for 12 inch wafers. The bonding process can be performed directly at wafer level or also at Flip-Chip level. The nanowires overcome the dicing step. The diced chips can be bonded by adjusting and pressing the NanoWired bumps together at room temperature, using the standard bonding devices. The required bonding forces range from 5 to 50 MPa for flip chips, LEDs and sensors. The bonding with nanowires, the so-called KlettWelding, can be explained by diffusion of the nanowires in each other under compression and weaving of the wires as well. The measured shear strength of these connections yields 15-24 MPa. The very large achieved Surface/Volume quotient of NanoWired surface causes this strength. For a better performance, a prior copper oxide reducing step for the copper NanoWires is needed. This can be done by using standard processes like forming gas plasma or formic acid vapor. By heating during the pressing process up to 230 °C, the shear strength increases to 60 MPa. The nanowired interconnections have an electrical conduction in the range of bulk metal, because of their pure metallic nature. Beside microelectronic applications, the bonding of larger metallic plates like aluminium, copper, steel and also flexible polymers, glass, silicon and ceramics are also enabled.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>33776387</pmid><doi>10.1007/s11665-021-05649-9</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-9495
ispartof Journal of materials engineering and performance, 2021-05, Vol.30 (5), p.3173-3177
issn 1059-9495
1544-1024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7985230
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion and Coatings
Engineering Design
Materials Science
Quality Control
Reliability
Safety and Risk
Tribology
title Low-Resistance Room-Temperature Interconnection Technique for Bonding Fine Pitch Bumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Resistance%20Room-Temperature%20Interconnection%20Technique%20for%20Bonding%20Fine%20Pitch%20Bumps&rft.jtitle=Journal%20of%20materials%20engineering%20and%20performance&rft.au=Roustaie,%20F.&rft.date=2021-05-01&rft.volume=30&rft.issue=5&rft.spage=3173&rft.epage=3177&rft.pages=3173-3177&rft.issn=1059-9495&rft.eissn=1544-1024&rft_id=info:doi/10.1007/s11665-021-05649-9&rft_dat=%3Cproquest_pubme%3E2506514056%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2506514056&rft_id=info:pmid/33776387&rfr_iscdi=true