Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes
Neuronal spiking is commonly recorded by invasive sharp microelectrodes, whereas standard noninvasive macroapproaches (e.g., electroencephalography [EEG] and magnetoencephalography [MEG]) predominantly represent mass postsynaptic potentials. A notable exception are low-amplitude high-frequency (∼600...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2021-03, Vol.118 (11), p.1-8 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 118 |
creator | Waterstraat, Gunnar Körber, Rainer Storm, Jan-Hendrik Curio, Gabriel |
description | Neuronal spiking is commonly recorded by invasive sharp microelectrodes, whereas standard noninvasive macroapproaches (e.g., electroencephalography [EEG] and magnetoencephalography [MEG]) predominantly represent mass postsynaptic potentials. A notable exception are low-amplitude high-frequency (∼600 Hz) somatosensory EEG/MEG responses that can represent population spikes when averaged over hundreds of trials to raise the signal-to-noise ratio. Here, a recent leap in MEG technology—featuring a factor 10 reduction in white noise level compared with standard systems—is leveraged to establish an effective single-trial portrayal of evoked cortical population spike bursts in healthy human subjects. This time-resolved approach proved instrumental in revealing a significant trial-to-trial variability of burst amplitudes as well as time-correlated (∼10 s) fluctuations of burst response latencies. Thus, ultralow-noise MEG enables noninvasive single-trial analyses of human cortical population spikes concurrent with low-frequency mass postsynaptic activity and thereby could comprehensively characterize cortical processing, potentially also in diseases not amenable to invasive microelectrode recordings. |
doi_str_mv | 10.1073/pnas.2017401118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27027666</jstor_id><sourcerecordid>27027666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-e096a9420846e137413a12052275601fc2cfe5ce1299dca3582f6a510c78f9153</originalsourceid><addsrcrecordid>eNpVkb1PHDEQxS0UFC4kNVWiLWkWZvy5biJFCJJIKDRAaznGexh27Y29exL_PUYHl6Sa4v3mzccj5AjhBEGx0ynackIBFQdE7PbICkFjK7mGd2QFQFXbccoPyIdSHgBAiw7ekwPGFCgKekVuf6UY4saWsPFN9EtOo11HPwfXlBDXg2_nHOzQ2GiHpxJKk_rmfhltrHByKVewqlOalsHOIcWmTOHRl49kv7dD8Z9e6yG5uTi_PvvRXl59_3n27bJ1HMXcetDSak6h49IjUxyZRQqCUiUkYO-o671wHqnWd84y0dFeWoHgVNdrFOyQfN36Tsvv0d85H-dsBzPlMNr8ZJIN5n8lhnuzThujdAdMd9Xg-NUgpz-LL7MZQ3F-GGy9bymGCkAqkQta0dMt6nIqJft-NwbBvKRhXtIwf9OoHV_-3W7Hv72_Ap-3wEOZU97pVNXgpJTsGWd2kZI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501261452</pqid></control><display><type>article</type><title>Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Waterstraat, Gunnar ; Körber, Rainer ; Storm, Jan-Hendrik ; Curio, Gabriel</creator><creatorcontrib>Waterstraat, Gunnar ; Körber, Rainer ; Storm, Jan-Hendrik ; Curio, Gabriel</creatorcontrib><description>Neuronal spiking is commonly recorded by invasive sharp microelectrodes, whereas standard noninvasive macroapproaches (e.g., electroencephalography [EEG] and magnetoencephalography [MEG]) predominantly represent mass postsynaptic potentials. A notable exception are low-amplitude high-frequency (∼600 Hz) somatosensory EEG/MEG responses that can represent population spikes when averaged over hundreds of trials to raise the signal-to-noise ratio. Here, a recent leap in MEG technology—featuring a factor 10 reduction in white noise level compared with standard systems—is leveraged to establish an effective single-trial portrayal of evoked cortical population spike bursts in healthy human subjects. This time-resolved approach proved instrumental in revealing a significant trial-to-trial variability of burst amplitudes as well as time-correlated (∼10 s) fluctuations of burst response latencies. Thus, ultralow-noise MEG enables noninvasive single-trial analyses of human cortical population spikes concurrent with low-frequency mass postsynaptic activity and thereby could comprehensively characterize cortical processing, potentially also in diseases not amenable to invasive microelectrode recordings.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2017401118</identifier><identifier>PMID: 33707209</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11), p.1-8</ispartof><rights>Copyright © 2021 the Author(s). Published by PNAS.</rights><rights>Copyright © 2021 the Author(s). Published by PNAS. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-e096a9420846e137413a12052275601fc2cfe5ce1299dca3582f6a510c78f9153</citedby><cites>FETCH-LOGICAL-c415t-e096a9420846e137413a12052275601fc2cfe5ce1299dca3582f6a510c78f9153</cites><orcidid>0000-0002-3377-7735 ; 0000-0001-7052-5134 ; 0000-0002-7215-5111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27027666$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27027666$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33707209$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waterstraat, Gunnar</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Storm, Jan-Hendrik</creatorcontrib><creatorcontrib>Curio, Gabriel</creatorcontrib><title>Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Neuronal spiking is commonly recorded by invasive sharp microelectrodes, whereas standard noninvasive macroapproaches (e.g., electroencephalography [EEG] and magnetoencephalography [MEG]) predominantly represent mass postsynaptic potentials. A notable exception are low-amplitude high-frequency (∼600 Hz) somatosensory EEG/MEG responses that can represent population spikes when averaged over hundreds of trials to raise the signal-to-noise ratio. Here, a recent leap in MEG technology—featuring a factor 10 reduction in white noise level compared with standard systems—is leveraged to establish an effective single-trial portrayal of evoked cortical population spike bursts in healthy human subjects. This time-resolved approach proved instrumental in revealing a significant trial-to-trial variability of burst amplitudes as well as time-correlated (∼10 s) fluctuations of burst response latencies. Thus, ultralow-noise MEG enables noninvasive single-trial analyses of human cortical population spikes concurrent with low-frequency mass postsynaptic activity and thereby could comprehensively characterize cortical processing, potentially also in diseases not amenable to invasive microelectrode recordings.</description><subject>Biological Sciences</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkb1PHDEQxS0UFC4kNVWiLWkWZvy5biJFCJJIKDRAaznGexh27Y29exL_PUYHl6Sa4v3mzccj5AjhBEGx0ynackIBFQdE7PbICkFjK7mGd2QFQFXbccoPyIdSHgBAiw7ekwPGFCgKekVuf6UY4saWsPFN9EtOo11HPwfXlBDXg2_nHOzQ2GiHpxJKk_rmfhltrHByKVewqlOalsHOIcWmTOHRl49kv7dD8Z9e6yG5uTi_PvvRXl59_3n27bJ1HMXcetDSak6h49IjUxyZRQqCUiUkYO-o671wHqnWd84y0dFeWoHgVNdrFOyQfN36Tsvv0d85H-dsBzPlMNr8ZJIN5n8lhnuzThujdAdMd9Xg-NUgpz-LL7MZQ3F-GGy9bymGCkAqkQta0dMt6nIqJft-NwbBvKRhXtIwf9OoHV_-3W7Hv72_Ap-3wEOZU97pVNXgpJTsGWd2kZI</recordid><startdate>20210316</startdate><enddate>20210316</enddate><creator>Waterstraat, Gunnar</creator><creator>Körber, Rainer</creator><creator>Storm, Jan-Hendrik</creator><creator>Curio, Gabriel</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3377-7735</orcidid><orcidid>https://orcid.org/0000-0001-7052-5134</orcidid><orcidid>https://orcid.org/0000-0002-7215-5111</orcidid></search><sort><creationdate>20210316</creationdate><title>Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes</title><author>Waterstraat, Gunnar ; Körber, Rainer ; Storm, Jan-Hendrik ; Curio, Gabriel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-e096a9420846e137413a12052275601fc2cfe5ce1299dca3582f6a510c78f9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waterstraat, Gunnar</creatorcontrib><creatorcontrib>Körber, Rainer</creatorcontrib><creatorcontrib>Storm, Jan-Hendrik</creatorcontrib><creatorcontrib>Curio, Gabriel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waterstraat, Gunnar</au><au>Körber, Rainer</au><au>Storm, Jan-Hendrik</au><au>Curio, Gabriel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2021-03-16</date><risdate>2021</risdate><volume>118</volume><issue>11</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Neuronal spiking is commonly recorded by invasive sharp microelectrodes, whereas standard noninvasive macroapproaches (e.g., electroencephalography [EEG] and magnetoencephalography [MEG]) predominantly represent mass postsynaptic potentials. A notable exception are low-amplitude high-frequency (∼600 Hz) somatosensory EEG/MEG responses that can represent population spikes when averaged over hundreds of trials to raise the signal-to-noise ratio. Here, a recent leap in MEG technology—featuring a factor 10 reduction in white noise level compared with standard systems—is leveraged to establish an effective single-trial portrayal of evoked cortical population spike bursts in healthy human subjects. This time-resolved approach proved instrumental in revealing a significant trial-to-trial variability of burst amplitudes as well as time-correlated (∼10 s) fluctuations of burst response latencies. Thus, ultralow-noise MEG enables noninvasive single-trial analyses of human cortical population spikes concurrent with low-frequency mass postsynaptic activity and thereby could comprehensively characterize cortical processing, potentially also in diseases not amenable to invasive microelectrode recordings.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>33707209</pmid><doi>10.1073/pnas.2017401118</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3377-7735</orcidid><orcidid>https://orcid.org/0000-0001-7052-5134</orcidid><orcidid>https://orcid.org/0000-0002-7215-5111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2021-03, Vol.118 (11), p.1-8 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7980398 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biological Sciences |
title | Noninvasive neuromagnetic single-trial analysis of human neocortical population spikes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20neuromagnetic%20single-trial%20analysis%20of%20human%20neocortical%20population%20spikes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Waterstraat,%20Gunnar&rft.date=2021-03-16&rft.volume=118&rft.issue=11&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2017401118&rft_dat=%3Cjstor_pubme%3E27027666%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501261452&rft_id=info:pmid/33707209&rft_jstor_id=27027666&rfr_iscdi=true |