Extended‐amygdala intrinsic functional connectivity networks: A population study
Pre‐clinical and human neuroimaging research implicates the extended‐amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance‐use behaviours. The extent to...
Gespeichert in:
Veröffentlicht in: | Human brain mapping 2021-04, Vol.42 (6), p.1594-1616 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1616 |
---|---|
container_issue | 6 |
container_start_page | 1594 |
container_title | Human brain mapping |
container_volume | 42 |
creator | Berry, Samuel C. Wise, Richard G. Lawrence, Andrew D. Lancaster, Thomas M. |
description | Pre‐clinical and human neuroimaging research implicates the extended‐amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance‐use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task‐free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter‐individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST‐CeA intrinsic functional connectivity (iFC) was heritable and further examined co‐heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST—CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co‐heritability associations with our principal components either across the ICNs or for specific BST‐Amygdala iFC. Possible differences in phenotype associations across task‐free, task‐based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well‐established ExtA ICNs.
We examine the intrinsic connectivity networks of two key nodes within the extended amygdala in a large human sample. We find no associations within this network with principal components related to negative disposition or alcohol use traits. We report heritable intrinsic functional connections between the bed nucleus of the stria terminalis (BST) and the centromedial and superficial amygdala regions; however, do not repeat a recent non‐human primate finding of a heritable connection between the BST and central nucleus of the amygdala. |
doi_str_mv | 10.1002/hbm.25314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7978137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2509231621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4434-4fb9ca6a561d47a1e2167f4467672e06cedd2d7a86e312306651a1dd0f280d6a3</originalsourceid><addsrcrecordid>eNp1kc1K5TAYhoMo_i-8ASm40UU1X5Impy4GVPwDRRBdh5wk1ThtcqZp1e68hLnGuRJzPCqO4CoJ38OTl-9FaAPwLmBM9u7HzS4pKLA5tAy4FDmGks5P77zISyZgCa3E-IAxQIFhES1RmmDG6DK6Pn7urDfW_Hv5q5rhzqhaZc53rfPR6azqve5c8KrOdPDepsej64bM2-4ptL_jfnaQTcKkr9WUymLXm2ENLVSqjnb9_VxFtyfHN0dn-cXV6fnRwUWu088sZ9W41IqrgoNhQoElwEXFGBdcEIu5tsYQI9SIWwqEYs4LUGAMrsgIG67oKvo18076cWONtim1quWkdY1qBxmUk_9PvLuXd-FRilKMgIok2H4XtOFPb2MnGxe1rWvlbeijJEyk7TJGcEK3vqEPoW_TWhJV4JJQ4AQStTOjdBtibG31GQawnDYlU1PyranEbn5N_0l-VJOAvRnw5Go7_GySZ4eXM-UruCyfLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509231621</pqid></control><display><type>article</type><title>Extended‐amygdala intrinsic functional connectivity networks: A population study</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Berry, Samuel C. ; Wise, Richard G. ; Lawrence, Andrew D. ; Lancaster, Thomas M.</creator><creatorcontrib>Berry, Samuel C. ; Wise, Richard G. ; Lawrence, Andrew D. ; Lancaster, Thomas M.</creatorcontrib><description>Pre‐clinical and human neuroimaging research implicates the extended‐amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance‐use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task‐free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter‐individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST‐CeA intrinsic functional connectivity (iFC) was heritable and further examined co‐heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST—CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co‐heritability associations with our principal components either across the ICNs or for specific BST‐Amygdala iFC. Possible differences in phenotype associations across task‐free, task‐based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well‐established ExtA ICNs.
We examine the intrinsic connectivity networks of two key nodes within the extended amygdala in a large human sample. We find no associations within this network with principal components related to negative disposition or alcohol use traits. We report heritable intrinsic functional connections between the bed nucleus of the stria terminalis (BST) and the centromedial and superficial amygdala regions; however, do not repeat a recent non‐human primate finding of a heritable connection between the BST and central nucleus of the amygdala.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.25314</identifier><identifier>PMID: 33314443</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adult ; Alcohol use ; Amygdala ; bed nucleus of the stria terminalis (BST/BNST) ; Central Amygdaloid Nucleus - diagnostic imaging ; Central Amygdaloid Nucleus - physiology ; central nucleus of the amygdala (CeA) ; Cerebral Cortex - diagnostic imaging ; Cerebral Cortex - physiology ; Connectome - methods ; dispositional negativity ; extended amygdala (ExtA) ; Female ; Functional magnetic resonance imaging ; Heritability ; Humans ; intrinsic functional connectivity (iFC) ; Magnetic Resonance Imaging ; Male ; Medical imaging ; Multifactorial Inheritance - physiology ; Nerve Net - diagnostic imaging ; Nerve Net - physiology ; Networks ; Neural networks ; Neuroimaging ; Pedigree ; Phenotypes ; Population studies ; Population-based studies ; Septal Nuclei - diagnostic imaging ; Septal Nuclei - physiology ; Stria terminalis ; Substance use ; task‐free functional magnetic resonance imaging (tf‐fMRI) ; Thalamus - diagnostic imaging ; Thalamus - physiology ; Young adults</subject><ispartof>Human brain mapping, 2021-04, Vol.42 (6), p.1594-1616</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC.</rights><rights>2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4434-4fb9ca6a561d47a1e2167f4467672e06cedd2d7a86e312306651a1dd0f280d6a3</citedby><cites>FETCH-LOGICAL-c4434-4fb9ca6a561d47a1e2167f4467672e06cedd2d7a86e312306651a1dd0f280d6a3</cites><orcidid>0000-0003-0628-7391 ; 0000-0003-1322-2449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7978137/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33314443$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berry, Samuel C.</creatorcontrib><creatorcontrib>Wise, Richard G.</creatorcontrib><creatorcontrib>Lawrence, Andrew D.</creatorcontrib><creatorcontrib>Lancaster, Thomas M.</creatorcontrib><title>Extended‐amygdala intrinsic functional connectivity networks: A population study</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Pre‐clinical and human neuroimaging research implicates the extended‐amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance‐use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task‐free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter‐individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST‐CeA intrinsic functional connectivity (iFC) was heritable and further examined co‐heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST—CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co‐heritability associations with our principal components either across the ICNs or for specific BST‐Amygdala iFC. Possible differences in phenotype associations across task‐free, task‐based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well‐established ExtA ICNs.
We examine the intrinsic connectivity networks of two key nodes within the extended amygdala in a large human sample. We find no associations within this network with principal components related to negative disposition or alcohol use traits. We report heritable intrinsic functional connections between the bed nucleus of the stria terminalis (BST) and the centromedial and superficial amygdala regions; however, do not repeat a recent non‐human primate finding of a heritable connection between the BST and central nucleus of the amygdala.</description><subject>Adult</subject><subject>Alcohol use</subject><subject>Amygdala</subject><subject>bed nucleus of the stria terminalis (BST/BNST)</subject><subject>Central Amygdaloid Nucleus - diagnostic imaging</subject><subject>Central Amygdaloid Nucleus - physiology</subject><subject>central nucleus of the amygdala (CeA)</subject><subject>Cerebral Cortex - diagnostic imaging</subject><subject>Cerebral Cortex - physiology</subject><subject>Connectome - methods</subject><subject>dispositional negativity</subject><subject>extended amygdala (ExtA)</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Heritability</subject><subject>Humans</subject><subject>intrinsic functional connectivity (iFC)</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Multifactorial Inheritance - physiology</subject><subject>Nerve Net - diagnostic imaging</subject><subject>Nerve Net - physiology</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Pedigree</subject><subject>Phenotypes</subject><subject>Population studies</subject><subject>Population-based studies</subject><subject>Septal Nuclei - diagnostic imaging</subject><subject>Septal Nuclei - physiology</subject><subject>Stria terminalis</subject><subject>Substance use</subject><subject>task‐free functional magnetic resonance imaging (tf‐fMRI)</subject><subject>Thalamus - diagnostic imaging</subject><subject>Thalamus - physiology</subject><subject>Young adults</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp1kc1K5TAYhoMo_i-8ASm40UU1X5Impy4GVPwDRRBdh5wk1ThtcqZp1e68hLnGuRJzPCqO4CoJ38OTl-9FaAPwLmBM9u7HzS4pKLA5tAy4FDmGks5P77zISyZgCa3E-IAxQIFhES1RmmDG6DK6Pn7urDfW_Hv5q5rhzqhaZc53rfPR6azqve5c8KrOdPDepsej64bM2-4ptL_jfnaQTcKkr9WUymLXm2ENLVSqjnb9_VxFtyfHN0dn-cXV6fnRwUWu088sZ9W41IqrgoNhQoElwEXFGBdcEIu5tsYQI9SIWwqEYs4LUGAMrsgIG67oKvo18076cWONtim1quWkdY1qBxmUk_9PvLuXd-FRilKMgIok2H4XtOFPb2MnGxe1rWvlbeijJEyk7TJGcEK3vqEPoW_TWhJV4JJQ4AQStTOjdBtibG31GQawnDYlU1PyranEbn5N_0l-VJOAvRnw5Go7_GySZ4eXM-UruCyfLA</recordid><startdate>20210415</startdate><enddate>20210415</enddate><creator>Berry, Samuel C.</creator><creator>Wise, Richard G.</creator><creator>Lawrence, Andrew D.</creator><creator>Lancaster, Thomas M.</creator><general>John Wiley & Sons, Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0628-7391</orcidid><orcidid>https://orcid.org/0000-0003-1322-2449</orcidid></search><sort><creationdate>20210415</creationdate><title>Extended‐amygdala intrinsic functional connectivity networks: A population study</title><author>Berry, Samuel C. ; Wise, Richard G. ; Lawrence, Andrew D. ; Lancaster, Thomas M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4434-4fb9ca6a561d47a1e2167f4467672e06cedd2d7a86e312306651a1dd0f280d6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Alcohol use</topic><topic>Amygdala</topic><topic>bed nucleus of the stria terminalis (BST/BNST)</topic><topic>Central Amygdaloid Nucleus - diagnostic imaging</topic><topic>Central Amygdaloid Nucleus - physiology</topic><topic>central nucleus of the amygdala (CeA)</topic><topic>Cerebral Cortex - diagnostic imaging</topic><topic>Cerebral Cortex - physiology</topic><topic>Connectome - methods</topic><topic>dispositional negativity</topic><topic>extended amygdala (ExtA)</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Heritability</topic><topic>Humans</topic><topic>intrinsic functional connectivity (iFC)</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Multifactorial Inheritance - physiology</topic><topic>Nerve Net - diagnostic imaging</topic><topic>Nerve Net - physiology</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Pedigree</topic><topic>Phenotypes</topic><topic>Population studies</topic><topic>Population-based studies</topic><topic>Septal Nuclei - diagnostic imaging</topic><topic>Septal Nuclei - physiology</topic><topic>Stria terminalis</topic><topic>Substance use</topic><topic>task‐free functional magnetic resonance imaging (tf‐fMRI)</topic><topic>Thalamus - diagnostic imaging</topic><topic>Thalamus - physiology</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berry, Samuel C.</creatorcontrib><creatorcontrib>Wise, Richard G.</creatorcontrib><creatorcontrib>Lawrence, Andrew D.</creatorcontrib><creatorcontrib>Lancaster, Thomas M.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berry, Samuel C.</au><au>Wise, Richard G.</au><au>Lawrence, Andrew D.</au><au>Lancaster, Thomas M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended‐amygdala intrinsic functional connectivity networks: A population study</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2021-04-15</date><risdate>2021</risdate><volume>42</volume><issue>6</issue><spage>1594</spage><epage>1616</epage><pages>1594-1616</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>Pre‐clinical and human neuroimaging research implicates the extended‐amygdala (ExtA) (including the bed nucleus of the stria terminalis [BST] and central nucleus of the amygdala [CeA]) in networks mediating negative emotional states associated with stress and substance‐use behaviours. The extent to which individual ExtA structures form a functionally integrated unit is controversial. We utilised a large sample (n > 1,000 healthy young adult humans) to compare the intrinsic functional connectivity networks (ICNs) of the BST and CeA using task‐free functional magnetic resonance imaging (fMRI) data from the Human Connectome Project. We assessed whether inter‐individual differences within these ICNs were related to two principal components representing negative disposition and alcohol use. Building on recent primate evidence, we tested whether within BST‐CeA intrinsic functional connectivity (iFC) was heritable and further examined co‐heritability with our principal components. We demonstrate the BST and CeA to have discrete, but largely overlapping ICNs similar to previous findings. We found no evidence that within BST—CeA iFC was heritable; however, post hoc analyses found significant BST iFC heritability with the broader superficial and centromedial amygdala regions. There were no significant correlations or co‐heritability associations with our principal components either across the ICNs or for specific BST‐Amygdala iFC. Possible differences in phenotype associations across task‐free, task‐based, and clinical fMRI are discussed, along with suggestions for more causal investigative paradigms that make use of the now well‐established ExtA ICNs.
We examine the intrinsic connectivity networks of two key nodes within the extended amygdala in a large human sample. We find no associations within this network with principal components related to negative disposition or alcohol use traits. We report heritable intrinsic functional connections between the bed nucleus of the stria terminalis (BST) and the centromedial and superficial amygdala regions; however, do not repeat a recent non‐human primate finding of a heritable connection between the BST and central nucleus of the amygdala.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>33314443</pmid><doi>10.1002/hbm.25314</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-0628-7391</orcidid><orcidid>https://orcid.org/0000-0003-1322-2449</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2021-04, Vol.42 (6), p.1594-1616 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7978137 |
source | MEDLINE; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adult Alcohol use Amygdala bed nucleus of the stria terminalis (BST/BNST) Central Amygdaloid Nucleus - diagnostic imaging Central Amygdaloid Nucleus - physiology central nucleus of the amygdala (CeA) Cerebral Cortex - diagnostic imaging Cerebral Cortex - physiology Connectome - methods dispositional negativity extended amygdala (ExtA) Female Functional magnetic resonance imaging Heritability Humans intrinsic functional connectivity (iFC) Magnetic Resonance Imaging Male Medical imaging Multifactorial Inheritance - physiology Nerve Net - diagnostic imaging Nerve Net - physiology Networks Neural networks Neuroimaging Pedigree Phenotypes Population studies Population-based studies Septal Nuclei - diagnostic imaging Septal Nuclei - physiology Stria terminalis Substance use task‐free functional magnetic resonance imaging (tf‐fMRI) Thalamus - diagnostic imaging Thalamus - physiology Young adults |
title | Extended‐amygdala intrinsic functional connectivity networks: A population study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%E2%80%90amygdala%20intrinsic%20functional%20connectivity%20networks:%20A%20population%20study&rft.jtitle=Human%20brain%20mapping&rft.au=Berry,%20Samuel%20C.&rft.date=2021-04-15&rft.volume=42&rft.issue=6&rft.spage=1594&rft.epage=1616&rft.pages=1594-1616&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.25314&rft_dat=%3Cproquest_pubme%3E2509231621%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509231621&rft_id=info:pmid/33314443&rfr_iscdi=true |