A computational model for adaptive recording of vital signs through context histories

Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ambient intelligence and humanized computing 2021-03, Vol.14 (12), p.16047-16061
Hauptverfasser: Aranda, Jorge Arthur Schneider, Bavaresco, Rodrigo Simon, de Carvalho, Juliano Varella, Yamin, Adenauer Corrêa, Tavares, Mauricio Campelo, Barbosa, Jorge Luis Victória
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16061
container_issue 12
container_start_page 16047
container_title Journal of ambient intelligence and humanized computing
container_volume 14
creator Aranda, Jorge Arthur Schneider
Bavaresco, Rodrigo Simon
de Carvalho, Juliano Varella
Yamin, Adenauer Corrêa
Tavares, Mauricio Campelo
Barbosa, Jorge Luis Victória
description Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.
doi_str_mv 10.1007/s12652-021-03126-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7972018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504774033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</originalsourceid><addsrcrecordid>eNp9kctOxCAUhonRqFFfwIUhceOmyq0D3ZgY4y0xcaNrQpnTDqYtI9CJvr2Mo-NlIRtOcj5-DnwIHVJySgmRZ5GySckKwmhBeK4LtYF2qZqooqSi3FzXXO6ggxifSV684pTSbbTDuSzVhKld9HSBre_nYzLJ-cF0uPdT6HDjAzZTM09uATiA9WHqhhb7Bi9cylR07RBxmgU_trOcMCR4TXjmYvLBQdxHW43pIhx87nvo6frq8fK2uH-4ubu8uC-skCIVkihOleC1bBQYaoiglRBEMlErI2XZTExVq8pYaRVUNbPKMqgph6YRrOaM76HzVe58rHuYWhhSMJ2eB9eb8Ka9cfp3Z3Az3fqFlpVkhKoccPIZEPzLCDHp3kULXWcG8GPUrCRCSkE4z-jxH_TZjyF_WaYqRlgpeEUzxVaUDT7GAM16GEr0UpxeidNZnP4Qp5dTHP18xvrIl6YM8BUQc2toIXzf_U_sOx8hpHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920254391</pqid></control><display><type>article</type><title>A computational model for adaptive recording of vital signs through context histories</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</creator><creatorcontrib>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</creatorcontrib><description>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-021-03126-8</identifier><identifier>PMID: 33758628</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Artificial Intelligence ; Batteries ; Communication ; Computational Intelligence ; Context ; Data analysis ; Data collection ; Electronic components ; Energy consumption ; Engineering ; Health care ; Health services ; Heart rate ; Ontology ; Optimization ; Original Research ; Physiology ; Power consumption ; Professionals ; Prototypes ; Reduction ; Robotics and Automation ; Signs ; Ubiquitous computing ; User Interfaces and Human Computer Interaction ; Wearable computers ; Wearable technology</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-03, Vol.14 (12), p.16047-16061</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</citedby><cites>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</cites><orcidid>0000-0002-9775-5842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-021-03126-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920254391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33758628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aranda, Jorge Arthur Schneider</creatorcontrib><creatorcontrib>Bavaresco, Rodrigo Simon</creatorcontrib><creatorcontrib>de Carvalho, Juliano Varella</creatorcontrib><creatorcontrib>Yamin, Adenauer Corrêa</creatorcontrib><creatorcontrib>Tavares, Mauricio Campelo</creatorcontrib><creatorcontrib>Barbosa, Jorge Luis Victória</creatorcontrib><title>A computational model for adaptive recording of vital signs through context histories</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><addtitle>J Ambient Intell Humaniz Comput</addtitle><description>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</description><subject>Adaptation</subject><subject>Artificial Intelligence</subject><subject>Batteries</subject><subject>Communication</subject><subject>Computational Intelligence</subject><subject>Context</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Electronic components</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Health care</subject><subject>Health services</subject><subject>Heart rate</subject><subject>Ontology</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Power consumption</subject><subject>Professionals</subject><subject>Prototypes</subject><subject>Reduction</subject><subject>Robotics and Automation</subject><subject>Signs</subject><subject>Ubiquitous computing</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctOxCAUhonRqFFfwIUhceOmyq0D3ZgY4y0xcaNrQpnTDqYtI9CJvr2Mo-NlIRtOcj5-DnwIHVJySgmRZ5GySckKwmhBeK4LtYF2qZqooqSi3FzXXO6ggxifSV684pTSbbTDuSzVhKld9HSBre_nYzLJ-cF0uPdT6HDjAzZTM09uATiA9WHqhhb7Bi9cylR07RBxmgU_trOcMCR4TXjmYvLBQdxHW43pIhx87nvo6frq8fK2uH-4ubu8uC-skCIVkihOleC1bBQYaoiglRBEMlErI2XZTExVq8pYaRVUNbPKMqgph6YRrOaM76HzVe58rHuYWhhSMJ2eB9eb8Ka9cfp3Z3Az3fqFlpVkhKoccPIZEPzLCDHp3kULXWcG8GPUrCRCSkE4z-jxH_TZjyF_WaYqRlgpeEUzxVaUDT7GAM16GEr0UpxeidNZnP4Qp5dTHP18xvrIl6YM8BUQc2toIXzf_U_sOx8hpHA</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Aranda, Jorge Arthur Schneider</creator><creator>Bavaresco, Rodrigo Simon</creator><creator>de Carvalho, Juliano Varella</creator><creator>Yamin, Adenauer Corrêa</creator><creator>Tavares, Mauricio Campelo</creator><creator>Barbosa, Jorge Luis Victória</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9775-5842</orcidid></search><sort><creationdate>20210318</creationdate><title>A computational model for adaptive recording of vital signs through context histories</title><author>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Artificial Intelligence</topic><topic>Batteries</topic><topic>Communication</topic><topic>Computational Intelligence</topic><topic>Context</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Electronic components</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Health care</topic><topic>Health services</topic><topic>Heart rate</topic><topic>Ontology</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Power consumption</topic><topic>Professionals</topic><topic>Prototypes</topic><topic>Reduction</topic><topic>Robotics and Automation</topic><topic>Signs</topic><topic>Ubiquitous computing</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aranda, Jorge Arthur Schneider</creatorcontrib><creatorcontrib>Bavaresco, Rodrigo Simon</creatorcontrib><creatorcontrib>de Carvalho, Juliano Varella</creatorcontrib><creatorcontrib>Yamin, Adenauer Corrêa</creatorcontrib><creatorcontrib>Tavares, Mauricio Campelo</creatorcontrib><creatorcontrib>Barbosa, Jorge Luis Victória</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranda, Jorge Arthur Schneider</au><au>Bavaresco, Rodrigo Simon</au><au>de Carvalho, Juliano Varella</au><au>Yamin, Adenauer Corrêa</au><au>Tavares, Mauricio Campelo</au><au>Barbosa, Jorge Luis Victória</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model for adaptive recording of vital signs through context histories</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><addtitle>J Ambient Intell Humaniz Comput</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>16047</spage><epage>16061</epage><pages>16047-16061</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33758628</pmid><doi>10.1007/s12652-021-03126-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9775-5842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1868-5137
ispartof Journal of ambient intelligence and humanized computing, 2021-03, Vol.14 (12), p.16047-16061
issn 1868-5137
1868-5145
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7972018
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Adaptation
Artificial Intelligence
Batteries
Communication
Computational Intelligence
Context
Data analysis
Data collection
Electronic components
Energy consumption
Engineering
Health care
Health services
Heart rate
Ontology
Optimization
Original Research
Physiology
Power consumption
Professionals
Prototypes
Reduction
Robotics and Automation
Signs
Ubiquitous computing
User Interfaces and Human Computer Interaction
Wearable computers
Wearable technology
title A computational model for adaptive recording of vital signs through context histories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20for%20adaptive%20recording%20of%20vital%20signs%20through%20context%20histories&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Aranda,%20Jorge%20Arthur%20Schneider&rft.date=2021-03-18&rft.volume=14&rft.issue=12&rft.spage=16047&rft.epage=16061&rft.pages=16047-16061&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-021-03126-8&rft_dat=%3Cproquest_pubme%3E2504774033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920254391&rft_id=info:pmid/33758628&rfr_iscdi=true