A computational model for adaptive recording of vital signs through context histories
Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2021-03, Vol.14 (12), p.16047-16061 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16061 |
---|---|
container_issue | 12 |
container_start_page | 16047 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 14 |
creator | Aranda, Jorge Arthur Schneider Bavaresco, Rodrigo Simon de Carvalho, Juliano Varella Yamin, Adenauer Corrêa Tavares, Mauricio Campelo Barbosa, Jorge Luis Victória |
description | Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored. |
doi_str_mv | 10.1007/s12652-021-03126-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7972018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504774033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</originalsourceid><addsrcrecordid>eNp9kctOxCAUhonRqFFfwIUhceOmyq0D3ZgY4y0xcaNrQpnTDqYtI9CJvr2Mo-NlIRtOcj5-DnwIHVJySgmRZ5GySckKwmhBeK4LtYF2qZqooqSi3FzXXO6ggxifSV684pTSbbTDuSzVhKld9HSBre_nYzLJ-cF0uPdT6HDjAzZTM09uATiA9WHqhhb7Bi9cylR07RBxmgU_trOcMCR4TXjmYvLBQdxHW43pIhx87nvo6frq8fK2uH-4ubu8uC-skCIVkihOleC1bBQYaoiglRBEMlErI2XZTExVq8pYaRVUNbPKMqgph6YRrOaM76HzVe58rHuYWhhSMJ2eB9eb8Ka9cfp3Z3Az3fqFlpVkhKoccPIZEPzLCDHp3kULXWcG8GPUrCRCSkE4z-jxH_TZjyF_WaYqRlgpeEUzxVaUDT7GAM16GEr0UpxeidNZnP4Qp5dTHP18xvrIl6YM8BUQc2toIXzf_U_sOx8hpHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920254391</pqid></control><display><type>article</type><title>A computational model for adaptive recording of vital signs through context histories</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</creator><creatorcontrib>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</creatorcontrib><description>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-021-03126-8</identifier><identifier>PMID: 33758628</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptation ; Artificial Intelligence ; Batteries ; Communication ; Computational Intelligence ; Context ; Data analysis ; Data collection ; Electronic components ; Energy consumption ; Engineering ; Health care ; Health services ; Heart rate ; Ontology ; Optimization ; Original Research ; Physiology ; Power consumption ; Professionals ; Prototypes ; Reduction ; Robotics and Automation ; Signs ; Ubiquitous computing ; User Interfaces and Human Computer Interaction ; Wearable computers ; Wearable technology</subject><ispartof>Journal of ambient intelligence and humanized computing, 2021-03, Vol.14 (12), p.16047-16061</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</citedby><cites>FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</cites><orcidid>0000-0002-9775-5842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-021-03126-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920254391?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,776,780,881,21367,27901,27902,33721,33722,41464,42533,43781,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33758628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aranda, Jorge Arthur Schneider</creatorcontrib><creatorcontrib>Bavaresco, Rodrigo Simon</creatorcontrib><creatorcontrib>de Carvalho, Juliano Varella</creatorcontrib><creatorcontrib>Yamin, Adenauer Corrêa</creatorcontrib><creatorcontrib>Tavares, Mauricio Campelo</creatorcontrib><creatorcontrib>Barbosa, Jorge Luis Victória</creatorcontrib><title>A computational model for adaptive recording of vital signs through context histories</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><addtitle>J Ambient Intell Humaniz Comput</addtitle><description>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</description><subject>Adaptation</subject><subject>Artificial Intelligence</subject><subject>Batteries</subject><subject>Communication</subject><subject>Computational Intelligence</subject><subject>Context</subject><subject>Data analysis</subject><subject>Data collection</subject><subject>Electronic components</subject><subject>Energy consumption</subject><subject>Engineering</subject><subject>Health care</subject><subject>Health services</subject><subject>Heart rate</subject><subject>Ontology</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Physiology</subject><subject>Power consumption</subject><subject>Professionals</subject><subject>Prototypes</subject><subject>Reduction</subject><subject>Robotics and Automation</subject><subject>Signs</subject><subject>Ubiquitous computing</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Wearable computers</subject><subject>Wearable technology</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kctOxCAUhonRqFFfwIUhceOmyq0D3ZgY4y0xcaNrQpnTDqYtI9CJvr2Mo-NlIRtOcj5-DnwIHVJySgmRZ5GySckKwmhBeK4LtYF2qZqooqSi3FzXXO6ggxifSV684pTSbbTDuSzVhKld9HSBre_nYzLJ-cF0uPdT6HDjAzZTM09uATiA9WHqhhb7Bi9cylR07RBxmgU_trOcMCR4TXjmYvLBQdxHW43pIhx87nvo6frq8fK2uH-4ubu8uC-skCIVkihOleC1bBQYaoiglRBEMlErI2XZTExVq8pYaRVUNbPKMqgph6YRrOaM76HzVe58rHuYWhhSMJ2eB9eb8Ka9cfp3Z3Az3fqFlpVkhKoccPIZEPzLCDHp3kULXWcG8GPUrCRCSkE4z-jxH_TZjyF_WaYqRlgpeEUzxVaUDT7GAM16GEr0UpxeidNZnP4Qp5dTHP18xvrIl6YM8BUQc2toIXzf_U_sOx8hpHA</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Aranda, Jorge Arthur Schneider</creator><creator>Bavaresco, Rodrigo Simon</creator><creator>de Carvalho, Juliano Varella</creator><creator>Yamin, Adenauer Corrêa</creator><creator>Tavares, Mauricio Campelo</creator><creator>Barbosa, Jorge Luis Victória</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9775-5842</orcidid></search><sort><creationdate>20210318</creationdate><title>A computational model for adaptive recording of vital signs through context histories</title><author>Aranda, Jorge Arthur Schneider ; Bavaresco, Rodrigo Simon ; de Carvalho, Juliano Varella ; Yamin, Adenauer Corrêa ; Tavares, Mauricio Campelo ; Barbosa, Jorge Luis Victória</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-70831843b7f8ea1a0419440724b8a775f6a9b89ac7c8e9b2c8c2eb13eff42b323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Artificial Intelligence</topic><topic>Batteries</topic><topic>Communication</topic><topic>Computational Intelligence</topic><topic>Context</topic><topic>Data analysis</topic><topic>Data collection</topic><topic>Electronic components</topic><topic>Energy consumption</topic><topic>Engineering</topic><topic>Health care</topic><topic>Health services</topic><topic>Heart rate</topic><topic>Ontology</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Physiology</topic><topic>Power consumption</topic><topic>Professionals</topic><topic>Prototypes</topic><topic>Reduction</topic><topic>Robotics and Automation</topic><topic>Signs</topic><topic>Ubiquitous computing</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Wearable computers</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aranda, Jorge Arthur Schneider</creatorcontrib><creatorcontrib>Bavaresco, Rodrigo Simon</creatorcontrib><creatorcontrib>de Carvalho, Juliano Varella</creatorcontrib><creatorcontrib>Yamin, Adenauer Corrêa</creatorcontrib><creatorcontrib>Tavares, Mauricio Campelo</creatorcontrib><creatorcontrib>Barbosa, Jorge Luis Victória</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranda, Jorge Arthur Schneider</au><au>Bavaresco, Rodrigo Simon</au><au>de Carvalho, Juliano Varella</au><au>Yamin, Adenauer Corrêa</au><au>Tavares, Mauricio Campelo</au><au>Barbosa, Jorge Luis Victória</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational model for adaptive recording of vital signs through context histories</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><addtitle>J Ambient Intell Humaniz Comput</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>16047</spage><epage>16061</epage><pages>16047-16061</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Wearable devices emerged from the advancement of communication technology and the miniaturization of electronic components. These devices periodically monitor the user’s vital signs and generally have a short battery life. This work introduces ODIN, a model for optimized vital signs collection based on adaptive rules. Analyzing vital sign values requires preciseness, so the adaption of these collected data allows a personalized analysis of the user’s health condition. The comparison with related works indicates that ODIN is the only model that presents context-aware-adaptive vital signs collection. The implementation of a prototype allowed to perform three evaluations of ODIN. The first evaluation used simulations in different scenarios, with the adaptive approach increasing battery life by 119% through the analysis of input data compared to data collection without adaptivity. The second evaluation applied the prototype to a database of real physiologic data, which allowed reduced data collection when the user has regular vital signs. This reduction optimized battery consumption by 66% compared to collection without adaptivity. Finally, the third evaluation applied ODIN through an Arduino and a heart rate monitor (Polar H7). The average power saved across mobile devices was 21%. Consequently, the adaptive strategy presented in this work allows the optimization of computational resources during the collection and analysis of vital signs. This optimization occurs because of the reduction in energy expenditure and the reduction in the amount of data that needs to be collected and stored.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>33758628</pmid><doi>10.1007/s12652-021-03126-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9775-5842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2021-03, Vol.14 (12), p.16047-16061 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7972018 |
source | SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Adaptation Artificial Intelligence Batteries Communication Computational Intelligence Context Data analysis Data collection Electronic components Energy consumption Engineering Health care Health services Heart rate Ontology Optimization Original Research Physiology Power consumption Professionals Prototypes Reduction Robotics and Automation Signs Ubiquitous computing User Interfaces and Human Computer Interaction Wearable computers Wearable technology |
title | A computational model for adaptive recording of vital signs through context histories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A27%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20model%20for%20adaptive%20recording%20of%20vital%20signs%20through%20context%20histories&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Aranda,%20Jorge%20Arthur%20Schneider&rft.date=2021-03-18&rft.volume=14&rft.issue=12&rft.spage=16047&rft.epage=16061&rft.pages=16047-16061&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-021-03126-8&rft_dat=%3Cproquest_pubme%3E2504774033%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920254391&rft_id=info:pmid/33758628&rfr_iscdi=true |