Identification of nodes influence based on global structure model in complex networks

Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2021-03, Vol.11 (1), p.6173-6173, Article 6173
Hauptverfasser: Ullah, Aman, Wang, Bin, Sheng, JinFang, Long, Jun, Khan, Nasrullah, Sun, ZeJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6173
container_issue 1
container_start_page 6173
container_title Scientific reports
container_volume 11
creator Ullah, Aman
Wang, Bin
Sheng, JinFang
Long, Jun
Khan, Nasrullah
Sun, ZeJun
description Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).
doi_str_mv 10.1038/s41598-021-84684-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_444fd16775aa48629b8cea50ff4561e9</doaj_id><sourcerecordid>2502042838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-2b7b11b3f7df2a66dd2186794d11fb4ce69d64dc241edbd8550ee3e9734eaf683</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEolXpC7BAkdggoYBvcewNEhpxGakSG7q2HPt48JDYg520w9vjmZShZYHwxpbPd36dy19VzzF6gxEVbzPDrRQNIrgRjAvW7B9V5wSxtiGUkMf33mfVZc5bVE5LJMPyaXVGaUdxR9B5db22ECbvvNGTj6GOrg7RQq59cMMMwUDd6wy2LrHNEHs91HlKs5nmBPVYyKGQtYnjboB9HWC6jel7flY9cXrIcHl3X1TXHz98XX1urr58Wq_eXzWmZWhqSN_1GPfUddYRzbm1BAveSWYxdj0zwKXlzBrCMNjeirZFABRkRxloxwW9qNaLro16q3bJjzr9VFF7dfyIaaN0mrwZQDHGnMW861qtmeBE9sKAbpFzrOUYZNF6t2jt5n4Ea8pYkh4eiD6MBP9NbeKN6iSXkvIi8OpOIMUfM-RJjT4bGAYdIM5ZkRYRgSSSh7pf_oVu45xCGdWRQowIeqDIQpkUc07gTsVgpA4mUIsJVDGBOppA7UvSi_ttnFJ-r7wAYgFuoY8uG39Y8gkrLuEUtRh35YW7lZ-OvljFOUwl9fX_pxaaLnQuRNhA-tPkP-r_BYXC3yY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502042838</pqid></control><display><type>article</type><title>Identification of nodes influence based on global structure model in complex networks</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Free Full-Text Journals in Chemistry</source><creator>Ullah, Aman ; Wang, Bin ; Sheng, JinFang ; Long, Jun ; Khan, Nasrullah ; Sun, ZeJun</creator><creatorcontrib>Ullah, Aman ; Wang, Bin ; Sheng, JinFang ; Long, Jun ; Khan, Nasrullah ; Sun, ZeJun</creatorcontrib><description>Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-84684-x</identifier><identifier>PMID: 33731720</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/705/258 ; Algorithms ; Benchmarks ; Disease transmission ; Disinfection ; Humanities and Social Sciences ; Immunization ; multidisciplinary ; Multidisciplinary Sciences ; Nodes ; Science ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2021-03, Vol.11 (1), p.6173-6173, Article 6173</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>51</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000630511700017</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c540t-2b7b11b3f7df2a66dd2186794d11fb4ce69d64dc241edbd8550ee3e9734eaf683</citedby><cites>FETCH-LOGICAL-c540t-2b7b11b3f7df2a66dd2186794d11fb4ce69d64dc241edbd8550ee3e9734eaf683</cites><orcidid>0000-0002-4942-9583 ; 0000-0002-3999-4917</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27928,27929,39261,39262,41124,42193,51580,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33731720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sheng, JinFang</creatorcontrib><creatorcontrib>Long, Jun</creatorcontrib><creatorcontrib>Khan, Nasrullah</creatorcontrib><creatorcontrib>Sun, ZeJun</creatorcontrib><title>Identification of nodes influence based on global structure model in complex networks</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).</description><subject>639/705/117</subject><subject>639/705/258</subject><subject>Algorithms</subject><subject>Benchmarks</subject><subject>Disease transmission</subject><subject>Disinfection</subject><subject>Humanities and Social Sciences</subject><subject>Immunization</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Nodes</subject><subject>Science</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstu1DAUhiMEolXpC7BAkdggoYBvcewNEhpxGakSG7q2HPt48JDYg520w9vjmZShZYHwxpbPd36dy19VzzF6gxEVbzPDrRQNIrgRjAvW7B9V5wSxtiGUkMf33mfVZc5bVE5LJMPyaXVGaUdxR9B5db22ECbvvNGTj6GOrg7RQq59cMMMwUDd6wy2LrHNEHs91HlKs5nmBPVYyKGQtYnjboB9HWC6jel7flY9cXrIcHl3X1TXHz98XX1urr58Wq_eXzWmZWhqSN_1GPfUddYRzbm1BAveSWYxdj0zwKXlzBrCMNjeirZFABRkRxloxwW9qNaLro16q3bJjzr9VFF7dfyIaaN0mrwZQDHGnMW861qtmeBE9sKAbpFzrOUYZNF6t2jt5n4Ea8pYkh4eiD6MBP9NbeKN6iSXkvIi8OpOIMUfM-RJjT4bGAYdIM5ZkRYRgSSSh7pf_oVu45xCGdWRQowIeqDIQpkUc07gTsVgpA4mUIsJVDGBOppA7UvSi_ttnFJ-r7wAYgFuoY8uG39Y8gkrLuEUtRh35YW7lZ-OvljFOUwl9fX_pxaaLnQuRNhA-tPkP-r_BYXC3yY</recordid><startdate>20210317</startdate><enddate>20210317</enddate><creator>Ullah, Aman</creator><creator>Wang, Bin</creator><creator>Sheng, JinFang</creator><creator>Long, Jun</creator><creator>Khan, Nasrullah</creator><creator>Sun, ZeJun</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4942-9583</orcidid><orcidid>https://orcid.org/0000-0002-3999-4917</orcidid></search><sort><creationdate>20210317</creationdate><title>Identification of nodes influence based on global structure model in complex networks</title><author>Ullah, Aman ; Wang, Bin ; Sheng, JinFang ; Long, Jun ; Khan, Nasrullah ; Sun, ZeJun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-2b7b11b3f7df2a66dd2186794d11fb4ce69d64dc241edbd8550ee3e9734eaf683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/705/117</topic><topic>639/705/258</topic><topic>Algorithms</topic><topic>Benchmarks</topic><topic>Disease transmission</topic><topic>Disinfection</topic><topic>Humanities and Social Sciences</topic><topic>Immunization</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Nodes</topic><topic>Science</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Aman</creatorcontrib><creatorcontrib>Wang, Bin</creatorcontrib><creatorcontrib>Sheng, JinFang</creatorcontrib><creatorcontrib>Long, Jun</creatorcontrib><creatorcontrib>Khan, Nasrullah</creatorcontrib><creatorcontrib>Sun, ZeJun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Aman</au><au>Wang, Bin</au><au>Sheng, JinFang</au><au>Long, Jun</au><au>Khan, Nasrullah</au><au>Sun, ZeJun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of nodes influence based on global structure model in complex networks</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-03-17</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>6173</spage><epage>6173</epage><pages>6173-6173</pages><artnum>6173</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33731720</pmid><doi>10.1038/s41598-021-84684-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4942-9583</orcidid><orcidid>https://orcid.org/0000-0002-3999-4917</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-03, Vol.11 (1), p.6173-6173, Article 6173
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7969936
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Free Full-Text Journals in Chemistry
subjects 639/705/117
639/705/258
Algorithms
Benchmarks
Disease transmission
Disinfection
Humanities and Social Sciences
Immunization
multidisciplinary
Multidisciplinary Sciences
Nodes
Science
Science & Technology
Science & Technology - Other Topics
Science (multidisciplinary)
title Identification of nodes influence based on global structure model in complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T16%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20nodes%20influence%20based%20on%20global%20structure%20model%20in%20complex%20networks&rft.jtitle=Scientific%20reports&rft.au=Ullah,%20Aman&rft.date=2021-03-17&rft.volume=11&rft.issue=1&rft.spage=6173&rft.epage=6173&rft.pages=6173-6173&rft.artnum=6173&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-84684-x&rft_dat=%3Cproquest_pubme%3E2502042838%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502042838&rft_id=info:pmid/33731720&rft_doaj_id=oai_doaj_org_article_444fd16775aa48629b8cea50ff4561e9&rfr_iscdi=true